

Rapport d'enquête

Sur l'incendie survenu au sein de la raffinerie exploitée par Esso Raffinage à Port-Jérôme-sur-Seine (76) le 11 mars 2024

Bordereau documentaire

Organisme auteur : Bureau d'enquêtes et d'analyses sur les risques industriels (BEA-RI)

Titre du document : rapport d'enquête sur l'incendie survenu au sein de la raffinerie exploitée par Esso

Raffinage à Port-Jérôme-sur-Seine (76) le 11 mars 2024

N°: MTE-BEARI-2024-06 Date du rapport: 28/11/2024

Proposition de mots-clés : incendie, raffinerie, intégrité des tuyauteries, corrosion, vieillissement,

conception

Avertissement

L'enquête technique faisant l'objet du présent rapport est réalisée dans le cadre des articles L. 501-1 à L. 501-19 du Code de l'Environnement.

Cette enquête a pour seul objet de prévenir de futurs accidents. Sans préjudice, le cas échéant, de l'enquête judiciaire qui peut être ouverte, elle consiste à collecter et analyser les informations utiles, à déterminer les circonstances et les causes certaines ou possibles de l'évènement, de l'accident ou de l'incident et, s'il y a lieu, à établir des recommandations de sécurité. Elle ne vise pas à déterminer des responsabilités.

En conséquence, l'utilisation de ce rapport à d'autres fins que la prévention pourrait conduire à des interprétations erronées.

Au titre de ce rapport on entend par :

- Cause de l'accident : toute action ou événement de nature technique ou organisationnelle, volontaire ou involontaire, active ou passive, ayant conduit à la survenance de l'accident. Elle peut être établie par les éléments collectés lors de l'enquête, ou supposée de manière indirecte. Dans ce cas le rapport d'enquête le précise explicitement.
- Facteur contributif : élément qui, sans être déterminant, a pu jouer un rôle dans la survenance ou dans l'aggravation de l'accident.
- Enseignement de sécurité : élément de retour d'expérience tiré de l'analyse de l'évènement. Il peut s'agir de pratiques à développer car de nature à éviter ou limiter les conséquences d'un accident, ou à éviter car pouvant favoriser la survenance de l'accident ou aggraver ses conséquences.
- Recommandation de sécurité : proposition d'amélioration de la sécurité formulée par le BEA-RI, sur la base des informations rassemblées dans le cadre de l'enquête de sécurité, en vue de prévenir des accidents ou des incidents. Cette recommandation est adressée, au moment de la parution du rapport définitif, à une personne physique ou morale qui dispose de deux mois à réception, pour faire part au BEA des suites qu'elle entend y donner. La réponse est publiée sur le site du BEA-RI.

Synthèse

Le lundi 11 mars 2024, peu après 15 heures, alors que la raffinerie exploitée par Esso Raffinage sur la plateforme de Gravenchon (76) fonctionne de manière nominale, un départ de feu est constaté autour de la section Naphta de l'une des unités de distillation. Les équipes opérationnelles de l'unité alertent le poste central incendie et mettent en œuvre les moyens locaux de défense incendie. À l'arrivée du responsable local des secours et des premiers moyens, il est décidé de déclencher le POI et de mettre en sécurité l'unité. Le feu sera contrôlé à 16h30 et déclaré éteint à 00h45. Le POI sera levé à 3h30. Le bilan humain fera état de 5 personnes impliquées lors de l'accident.

À la suite de l'incendie, les installations sont maintenues à l'arrêt et en l'état, dans l'attente des différentes investigations. Le plan d'action consistera à la mise en sécurité de l'unité, et à la gestion des eaux et des déchets issus de l'incendie. Puis une évaluation précise des dégâts et dommages aux installations sera menée pour définir les travaux nécessaires à la remise en état. En parallèle, une cellule d'investigation pluridisciplinaire a été constituée par l'exploitant pour déterminer les causes directes et racines. Le directeur du bureau d'enquêtes et d'analyses sur les risques industriels (BEA-RI) a décidé le 14 mars 2024 de l'ouverture d'une enquête, et les enquêteurs techniques du BEA-RI se sont rendus sur place le 27 mars 2024.

Deux points de fuites ayant alimenté l'incendie ont rapidement été identifiés: la fuite initiale d'hydrocarbures lourds (overflash¹) en provenance de la distillation sous vide et une secondaire sur une ligne d'essence légère à 6 mètres de hauteur, résultant d'une exposition prolongée au feu. De nombreuses investigations ont été réalisées et commandées par l'exploitant sur la ligne d'overflash de sa propre initiative et/ou à la demande du BEA-RI pour déterminer les causes de l'événement. Elles concluent que la rupture de la ligne d'overflash constituée d'acier en 5%Cr résulte d'un amincissement de paroi progressif en service dû à un phénomène de corrosion interne de type sulfuration à chaud par réaction des composés soufrés du fluide véhiculé avec le métal du tube. Le tube a subi des pertes d'épaisseur très importantes : vraisemblablement 9,8 mm sur une période de 11 ans pour une épaisseur nominale de 10,31 mm.

Le 11 mars 2024, au moment de l'événement, il est vraisemblable que l'épaisseur du tube à certains endroits était de moins d'1 mm. Des opérations de nettoyage à proximité, puis une surpression ponctuelle, ont suffi à provoquer l'ouverture du tube, et à générer un incendie qui a lui-même conduit à la rupture d'une deuxième tuyauterie exposée au flux thermique.

Les simulations réalisées sur l'écoulement des fluides dans le tronçon de tuyauterie infirment l'hypothèse d'une corrosion accélérée par point de mélange (mix-point). La géométrie du tronçon incriminé (agrandissement excentrique) a potentiellement pu être un facteur accélérateur de la corrosion même si les simulations d'écoulement des fluides ne permettent pas de conclure sur son impact. Il est également difficile de suivre l'évolution de la composition de l'overflash (notamment en matière de H₂S dissous) et donc de se positionner sur son impact sur la dégradation survenue.

Les enseignements de sécurité suivants sont évoqués dans le rapport : la nécessité d'une meilleure caractérisation de l'overflash et de son impact sur les vitesses de corrosion des aciers, le caractère indispensable du suivi et de la traçabilité des installations et de leurs évolutions dans le temps, ainsi que l'importance du monitoring du vieillissement des ouvrages.

N° MTE-BEARI-2024-06 Page 4|25

¹ L'overflash est dans une colonne de distillation le surplus de liquide entrainé par les fractions légères depuis la zone de flash. Il est reflué sur les plateaux au-dessus de la zone de flash pour ramener les fractions lourdes au fond de la colonne. L'overflash maintient les contaminants hors des produits légers.

Le BEA-RI recommande à l'exploitant de mettre en œuvre jusqu'à son terme le plan d'action qu'il a élaboré. À savoir :

- Remplacement de l'acier à 5%Cr du circuit d'overflash par de l'acier inoxydable ;
- Réalisation et mise en œuvre d'un plan de contrôle de tous les circuits de fond de tour sous vide en acier carbone ou 5%Cr et remplacement en cas de besoin;
- Revue des stratégies de suivi de tous les équipements de l'usine potentiellement soumis à ce mode de dégradation ;
- Étude de la possibilité d'abaisser la température des produits de fond de tour;
- Partage du retour d'expérience de l'événement avec les autres sites ExxonMobil.

Sommaire

l.	Rappe	el sur l'enquête de sécurité	7
П.	Const	ats immédiats et engagement de l'enquête	7
 	I.2 Le bila I.3 Les me	constances de l'accidentesures prises après l'accidentesures prises après l'accidentegement et l'organisation de l'enquête	7 8
III.	_	extualisation	
		teforme de Gravenchoné de distillation	
IV.	Dérou	lement de l'évènement	11
		nologie de l'évènementrvention des secours publics	
V.	Comp	te-rendu des investigations menées	12
١	/.2 Invest	naissance de terrain	14 16 16
	V.3.2	Analyse dynamique des fluides	
VI.		usions sur le scénario de l'événement	
		urs contributifs	20 20 20
VII.	Enseig	nements de sécurité	21
١	/II.2 Suivi	ctérisation de l'overflashdes installations dans le temps	21
VIII. IX.		mmandations de sécurité à destination de l'exploitant res	
	Annexe 1	Rapport technique Institut de Soudure	

Rapport d'enquête

Sur l'incendie survenu au sein de la raffinerie exploitée par Esso Raffinage à Port-Jérôme-sur-Seine (76) le 11 mars 2024

I. Rappel sur l'enquête de sécurité

L'enquête technique faisant l'objet du présent rapport est réalisée dans le cadre des articles L. 501-1 à L. 501-19 du Code de l'Environnement. Cette enquête a pour seul objet de prévenir de futurs accidents.

Sans préjudice, le cas échéant, de l'enquête judiciaire qui peut être ouverte, elle consiste à collecter et analyser les informations utiles, à déterminer les circonstances et les causes certaines ou possibles de l'évènement, de l'accident ou de l'incident et, s'il y a lieu, à établir des recommandations de sécurité.

Elle ne vise pas à déterminer des responsabilités. En conséquence, l'utilisation de ce rapport à d'autres fins que la prévention pourrait conduire à des interprétations erronées.

II. Constats immédiats et engagement de l'enquête

II.1 Les circonstances de l'accident

Le lundi 11 mars, quelques minutes après 15 heures, alors que la raffinerie exploitée par Esso Raffinage sur la plateforme de Gravenchon fonctionne de manière nominale, un départ de feu est constaté autour de la section Naphta de l'une des unités de distillation. Les équipes opérationnelles de l'unité alertent le poste central incendie et mettent en œuvre les moyens locaux de défense incendie (lances et robinet incendie armé (RIA)). À l'arrivée du responsable local des secours et des premiers moyens, il est décidé de déclencher le POI et de mettre en sécurité l'unité. Le feu sera contrôlé à 16h30 et déclaré éteint à 00h45. Le POI sera levé à 3h30.

II.2 Le bilan de l'accident

Sur le plan humain, 5 personnes ont été impliquées lors de l'accident. Trois personnes ont été soignées sur place, une placée en observation à l'hôpital pendant quelques heures et une pendant plus de 24 heures.

La quantité de produits impliqués dans l'incendie est de l'ordre de 5 tonnes d'essence légère et de l'ordre de 70 tonnes d'hydrocarbures lourds (résidus sous vide ou résidus atmosphériques). Les eaux d'extinction contenant des émulseurs ont été isolées, et conservées pour être traitées. Leur volume a été évalué entre 10 000 et 20 000 m³. Les mesures dans l'air réalisées n'ont pas signalé d'éléments notables.

II.3 Les mesures prises après l'accident

À la suite de l'incendie, les installations ont été maintenues à l'arrêt et en l'état dans l'attente des différentes investigations. Le plan d'action a tout d'abord consisté à la mise en sécurité de l'unité, et à la gestion des eaux et des déchets issus de l'incendie. Puis une évaluation précise des dégâts et dommages aux installations a été menée pour définir les travaux nécessaires à la remise en état.

En parallèle, une cellule d'investigation pluridisciplinaire composée d'experts internes, de spécialistes et de directeurs d'autres sites du groupe, a été montée pour déterminer les causes directes et racines.

II.4 L'engagement et l'organisation de l'enquête

Au vu des circonstances et du contexte de l'accident, le directeur du bureau d'enquêtes et d'analyses sur les risques industriels (BEA-RI) a décidé le 14 mars 2024 de l'ouverture d'une enquête.

Les enquêteurs techniques du BEA-RI se sont rendus sur place le 27 mars 2024. Ils ont rencontré les représentants de la société Esso Raffinage. Ils ont recueilli les témoignages des acteurs impliqués dans l'évènement et dans sa gestion. Ils ont eu, consécutivement à ces entretiens, communication des pièces, documents et résultats d'investigations nécessaires à leur enquête.

III. Contextualisation

III.1 La plateforme de Gravenchon

La raffinerie Esso Raffinage de Port-Jérôme-sur-Seine (76) fait partie de la plateforme de Gravenchon qui regroupe des activités de raffinage et de pétrochimie du groupe ExxonMobil.

Les activités de production du groupe ExxonMobil sont assurées en France par les sociétés Esso Raffinage qui couvre l'activité du raffinage (producteur, fournisseur et distributeur des produits du raffinage : carburant, lubrifiants, huiles, paraffine et bitume) et ExxonMobil Chemical France (EMCF) qui regroupe toute l'activité chimie (production et vente d'oléfines, d'aromatiques, de fluides, de caoutchouc synthétique, de polyéthylène, de polypropylène, de plastifiants, de bases pour les lubrifiants synthétiques, d'additifs pour les carburants, ...).

Sur près de 700 hectares, la plateforme de Gravenchon regroupe une raffinerie et une usine de fabrication de lubrifiants finis exploitées par Esso Raffinage, ainsi qu'un site pétrochimique exploité par EMCF. Ces deux entités emploient 2150 collaborateurs.

Les produits issus des procédés sont utilisés dans de nombreux domaines d'application : carburants routiers, maritimes ou aviation, lubrifiants, produits de base pour la fabrication d'emballages ou de conditionnements plastiques, matières premières pour l'industrie ou les équipementiers du secteur de l'automobile.

Administrativement, compte tenu des procédés employés et des substances stockées, le site relève de la directive Seveso, pour le stockage de matières dangereuses (produits inflammables, toxiques, dangereux pour l'environnement ou réagissant avec l'eau) et de la directive IED relative aux émissions industrielles pour le raffinage et l'activité de fabrication de produits chimiques organiques.

De par son statut Seveso seuil haut, le site dispose d'un plan d'opération interne (POI) qui s'appuie sur une organisation interne de la sécurité et un service interne d'incendie et de secours. Cette organisation

vaut pour les deux entités qui exploitent les installations. En outre, la plateforme figure depuis l'arrêté du 6 janvier 2022 sur la liste des plateformes industrielles reconnues au niveau national.

Pour les situations présentant un danger grave à l'extérieur de l'emprise foncière de l'établissement, le Préfet du département dispose du Plan Particulier d'Intervention (PPI) de la zone industrielle de Port-Jérôme qui a été approuvé le 12 novembre 2020.

III.2 L'unité de distillation

Les raffineries disposent d'unités de distillation. Une unité de distillation a pour fonction de fractionner le pétrole brut en différentes coupes pétrolières répondant à des spécifications précises.



Figure n°1 : schéma de principe de la distillation atmosphérique du pétrole brut (crédit OSHA)

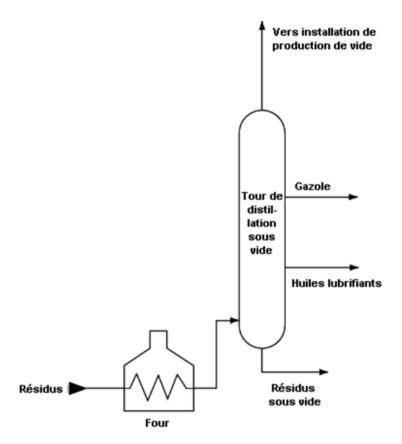


Figure n°2 : schéma de principe de la distillation sous vide (crédit OSHA)

Sur la plateforme de Gravenchon, l'unité au sein de laquelle l'incendie s'est déclaré le 11 mars 2024 regroupe les unités de distillation atmosphérique et sous vide de pétrole brut et les unités de séparation-désulfuration des essences, gazoles et kérosènes qui sont implantées sur le site de la raffinerie au sud du bloc 17 et au centre du site. Les installations des unités du bloc 17 distillent des bruts d'origines diverses. Le produit en provenance des bacs de stockage y est préchauffé, traité, et partiellement vaporisé dans un four avant de subir un fractionnement atmosphérique.

Le brut réduit issu du fond de la tour atmosphérique est ensuite distillé sous vide. L'abaissement de pression permet d'obtenir la vaporisation à des températures inférieures à 410°C d'une gamme de produits normalement liquides à cette température et à pression atmosphérique, ce qui évite la dégradation thermique de ces produits.

En fond de la tour sous vide plusieurs produits intermédiaires sont redirigés vers d'autres tours qui refractionnent les produits les plus lourds.

Dans le voisinage immédiat des unités du bloc 17 on compte également les unités qui servent à la séparation des essences des Gaz de Pétrole Liquéfiés (GPL) et à la désulfuration de l'essence légère en vue de son utilisation dans les unités en aval. Ces unités ont également été impliquées dans la séquence accidentelle par effet domino.

IV. Déroulement de l'évènement

IV.1 Chronologie de l'évènement

Le 11 mars 2024 à 15h l'unité de distillation DIST2 est en opération, la situation est stable. Un feu est détecté autour de la section Naphta. Le poste central incendie est prévenu.

À 15h08 (premier schéma ci-contre), la fuite est identifiée à distance, au niveau d'une vanne de contrôle de la section. Le chef opérateur arrête alors les pompes Naphta et essences légères puis ferme les vannes de contrôle au refoulement. 10 minutes plus tard, la vanne de sécurité de fond du ballon en amont des pompes est fermée également.

À 15h15, les opérateurs observent une fuite de produit noir suggérant la présence d'une fuite sur le circuit d'overflash² de la distillation sous vide. La pompe d'overflash est alors arrêtée également.

Le POI est activé à 15h22.

À 15h27 (deuxième schéma ci-contre), le feu se développant toujours, la décision est prise de bipasser la distillation sous vide. Mais le feu s'intensifie alors fortement dès que le circuit de fond est alimenté en résidu atmosphérique (RAT), à une pression de 24 bars (alors que l'Overflash et le résidu sous vide (RSV) étaient opérés à une pression de 5 bars). Le chef opérateur décide alors d'arrêter l'intégralité de l'unité de distillation de brut et les hydrotraitements associés.

Un second incendie survient brutalement à 15h43, suite à la rupture d'une ligne d'essence exposée au feu à 6 mètres de hauteur.

Le feu est contrôlé à 16h30 et éteint à 00h45. Le POI est levé à 3h30.

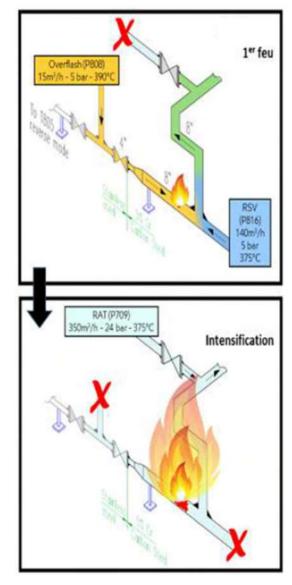


Figure n°3 : coupure des vannes (crédit ExxonMobil)

N° MTE-BEARI-2024-06 Page 11 | 25

² L'overflash est dans une colonne de distillation le surplus de liquide entrainé par les fractions légères depuis la zone de flash. Il est reflué sur les plateaux au-dessus de la zone de flash pour ramener les fractions lourdes au fond de la colonne. L'overflash maintient les contaminants hors des produits légers.

IV.2 L'intervention des secours publics

En application de la réglementation applicable aux sites de stockage de liquides inflammables³, l'exploitant a choisi d'être autonome en matière de lutte contre l'incendie. Cela signifie que l'exploitant s'est doté de moyens de lutte contre l'incendie suffisants pour faire face à une liste de scénarios d'accidents préétablis par la réglementation et l'étude de dangers de l'installation. Les services d'incendie et de secours publics demeurent mobilisables pour les accidents les plus importants et notamment ceux qui ont été retenus pour élaborer le PPI. Pour les autres, l'exploitant doit se doter des moyens suffisants pour y faire face seul.

Pour rendre opérationnelle cette stratégie, l'industriel s'appuie, entre autres, sur un service de secours interne basé au Poste de commandement Incendie (PCI) implanté sur le site.

Une équipe de 24 sapeurs-pompiers d'usine dispose de 4 fourgons-pompes mousse et de 4 camionsciternes émulseur. Ces moyens généraux s'ajoutent aux installations fixes présentes au sein de chaque unité (réseau d'hydrants) et aux équipiers de seconde intervention que chaque unité met à disposition en cas d'incendie.

Les opérations de secours se font sous la direction d'une organisation bien définie qui fait intervenir les fonctions de chef d'unité, de superintendant et de directeur de la raffinerie en fonction de l'ampleur de l'évènement et du niveau de plan mis en œuvre (POI, PPI).

L'intervention a été essentiellement conduite par les services d'incendie et de secours internes de l'industriel. Dans le cadre des procédures en place, dès l'activation du POI, les services de secours publics ainsi que l'inspection des installations classées ont été informés de cette activation.

V. Compte-rendu des investigations menées

V.1 Reconnaissance de terrain

Les enquêteurs techniques du BEA-RI se sont rendus sur site le 27 mars 2024, après avoir échangé la veille avec l'inspection des installations classées de la DREAL Normandie.

La visite de terrain a permis de visualiser les installations impliquées dans la séquence accidentelle et de comprendre le fonctionnement de ces dernières.

Deux points de fuites ayant alimenté l'incendie ont été identifiés : un premier sur le circuit d'overflash de la distillation sous vide et un secondaire sur une ligne de naphta à 6 mètres de hauteur, résultant d'une exposition prolongée au feu.

N° MTE-BEARI-2024-06 Page 12 | 25

³ Arrêté du 3 octobre 2010 relatif au stockage en réservoirs aériens manufacturés exploités au sein d'une installation classée soumise à autorisation au titre de l'une ou plusieurs des rubriques 1436, 4330, 4331, 4722, 4734, 4742, 4743, 4744, 4746, 4747 ou 4748, ou pour le pétrole brut au titre de l'une ou plusieurs des rubriques 4510 ou 4511 de la législation des installations classées pour la protection de l'environnement.

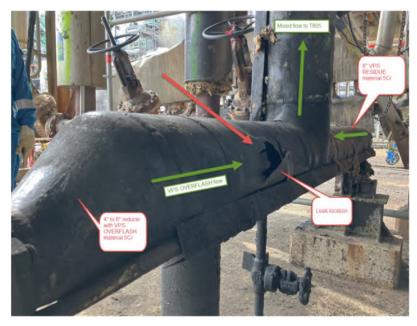


Figure n°4: point de rupture au niveau de la ligne d'overflash, la ligne d'overflash est en inox, seul le tronçon visible sur la photo était en 5%Cr (crédit ExxonMobil)

Figure n°5 : point de rupture au niveau de la ligne de naphta (crédit ExxonMobil)

La visite a également permis de prendre connaissance de l'organisation mise en place par l'exploitant pour évaluer l'impact de l'incendie sur les installations, en déterminer les causes et mettre en œuvre un plan d'action issu du retour d'expérience. Les enquêteurs ont également pu échanger avec l'exploitant sur le déroulement de l'intervention et sur les éventuelles difficultés rencontrées.

V.2 Investigations complémentaires

De nombreuses investigations ont été réalisées par l'exploitant sur la ligne d'Overflash de sa propre initiative et/ou à la demande du BEA-RI pour déterminer les causes de l'événement, on évoquera notamment :

- Des analyses permettant de déterminer les caractéristiques chimiques du tube à l'origine de la fuite enflammée;
- Des analyses permettant de déterminer les épaisseurs résiduelles du tube à l'origine de l'événement;
- Des recherches documentaires sur les données relatives à la conception de l'installation;
- Une analyse de dynamique des fluides pour évaluer l'impact de la géométrie des tubes et des différents flux à proximité du point de fuite.

En complément, une expertise métallurgique dont le contenu a fait l'objet d'une concertation avec le BEA-RI a été commandée par l'exploitant à l'Institut de Soudure. Elle a consisté à réaliser :

- Un examen visuel externe du tube;
- Des relevés dimensionnels;
- Des mesures d'épaisseur par ultrasons;
- Un scan 3D numérisation laser du tube;
- Un examen visuel interne;
- Un examen métallographique;
- Des mesures de dureté;
- Des analyses chimiques;
- Des microanalyses en zone fondue de la soudure ;
- Des essais mécaniques en métal de base du tube⁴;
- · Un examen fractographique de la déchirure ;
- Des microanalyses du dépôt et de la couche interne de produits de corrosion;
- Et une analyse du dépôt interne prélevé dans le tube.

N° MTE-BEARI-2024-06 Page 14 | 25

⁴ Zone non affectée par les soudures

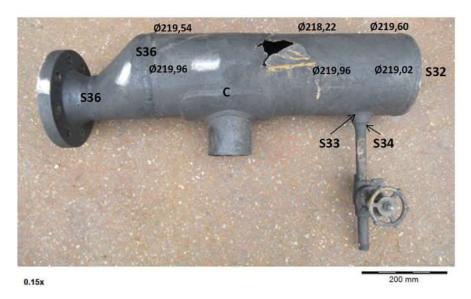


Figure n°6 : vue d'ensemble du tronçon de tuyauterie côté déchirure – repérage des soudures et relevé des diamètres extérieurs en millimètres (crédit Institut de Soudure)

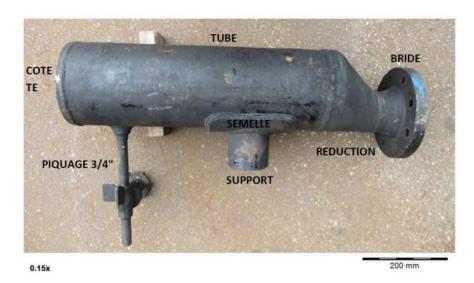


Figure n°7 : vue d'ensemble du tronçon de tuyauterie côté opposé à la déchirure (crédit Institut de Soudure)

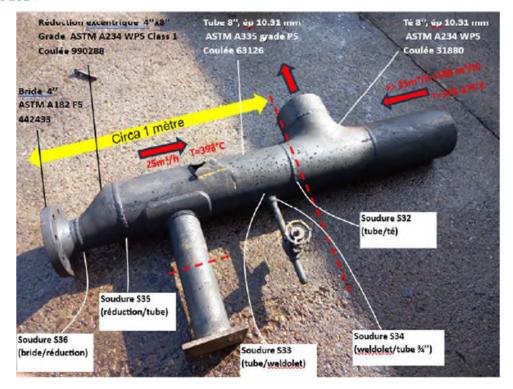


Figure n°8 : vue du tronçon de tuyauterie ayant fait l'objet des expertises (crédit Institut de Soudure)

V.3 Résultats des investigations

V.3.1 Analyses métallurgiques

Le rapport technique de l'Institut de Soudure détaillant les résultats des analyses réalisées figure en annexe 1 de ce rapport. Il émet les conclusions suivantes.

Le tube de diamètre 8 pouces n'a pas subi de déformation plastique d'ensemble (gonflement) avant sa rupture. Les relevés d'épaisseur montrent des pertes d'épaisseur importantes par l'intérieur. Les épaisseurs résiduelles de paroi à ce niveau vont d'un minimum de 1,26 mm à un maximum de 5,87 mm, pour une épaisseur nominale annoncée de 10,31 mm. La cartographie réalisée par ultrasons confirme ces mesures et met en évidence une diminution d'épaisseur généralisée quasiment sur l'ensemble du tube en 8 pouces avec une épaisseur résiduelle moyenne estimée à 2 mm. On note que le phénomène de perte d'épaisseur est moins important à proximité des soudures S32 et S35 ainsi qu'autour de la semelle de renfort du support.

Les microstructures observées sur les différentes coupes ne montrent pas de signe d'évolution ou de dégradation du matériau en service, ni même d'indice de transformation métallurgique notable liée à l'exposition en température lors de l'incendie.

Les microanalyses réalisées sur la coupe métallographique en zone fondue de la soudure entre le tube 8 pouces et le té montrent que la composition du métal fondu de la soudure est conforme à l'attendu.

La composition chimique du matériau du tube et les caractéristiques mécaniques déterminées lors de l'essai de traction en métal de base satisfont aux exigences du standard pour la nuance annoncée. Les valeurs d'énergie de rupture obtenues lors de l'essai de résilience ne mettent pas en évidence une quelconque fragilité du matériau.

L'amincissement généralisé de la paroi du tube par l'intérieur et la présence de dépôts internes riches en soufre constatés apparaissent caractéristiques d'un endommagement par corrosion à chaud de type sulfuration provoqué par le fluide véhiculé contenant des produits soufrés.

Par rapport au phénomène d'endommagement identifié et responsable de l'amincissement de la paroi, les épaisseurs résiduelles plus importantes constatées au voisinage des soudures sont liées à la meilleure résistance des cordons de soudure à la sulfuration (vraisemblablement car l'acier fondu a une teneur en chrome plus importante que celle du métal de base), celles-ci ont eu un effet protecteur sur le métal de base environnant sans doute par rapport à l'action de l'écoulement du fluide (les cordons étant proéminents par rapport aux surfaces environnantes.

Concernant l'amincissement moindre de la paroi du tube au droit de la semelle support, il s'agit là probablement d'un effet thermique. La paroi du tube est alors à une température moindre du fait du tube support dépassant du calorifuge qui évacue des calories. La vitesse de sulfuration à chaud dépendant de la température, cela peut-être une cause de la perte d'épaisseur plus faible à ce niveau.

En conclusion, la rupture de la ligne d'overflash constituée d'acier en 5%Cr résulte d'un amincissement de paroi progressif en service dû à un phénomène de corrosion interne de type sulfuration à chaud par réaction des composés soufrés du fluide process avec le métal du tube, mode d'endommagement bien identifié dans les installations de raffinage. Le tube a subi des pertes d'épaisseur très importantes : vraisemblablement 9,8 mm sur une période de 11 ans, ce qui pourrait correspondre à une vitesse de corrosion de 0,89 mm/an.

V.3.2 Analyse dynamique des fluides

Une analyse de dynamique des fluides a été réalisée par ExxonMobil à la demande du BEA-RI. Les résultats de cette analyse figurent en **annexe 2** de ce rapport. L'objectif était d'évaluer l'impact potentiel de plusieurs facteurs sur le phénomène de corrosion subit par l'ouvrage:

- La géométrie du Té;
- La différence de vitesse entre les deux produits arrivant au niveau du Té, l'overflash et le résidu sous vide;
- La différence de température entre les deux produits.

L'hypothèse est faite que les deux produits sont en phase liquide. La section étudiée a les caractéristiques suivantes :

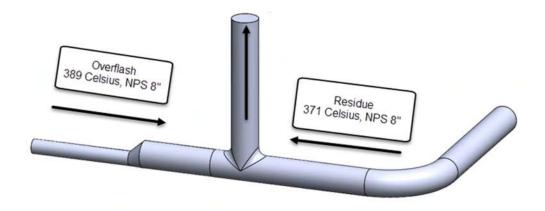


Figure n°9 : schématisation du tronçon de tuyauterie ayant fait l'objet de l'analyse (ExxonMobil)

L'analyse réalisée statue sur les points suivants :

- On n'observe pas de corrélation claire entre la différence de vitesse de chacun des deux fluides et les dommages observés;
- La majorité des particules ont un temps de présence dans la zone corrodée inférieur à 5 secondes.

Elle ne permet donc pas de conclure sur l'impact de la géométrie de l'assemblage (augmentation de diamètre) ni sur celui de la différence de débit entre l'arrivée d'overflash et l'arrivée de résidu sous vide.

Par contre, la simulation montre que le profil de température ressenti en surface interne de la tuyauterie ne correspond pas à un profil engendrant une corrosion de type "mix point⁵".

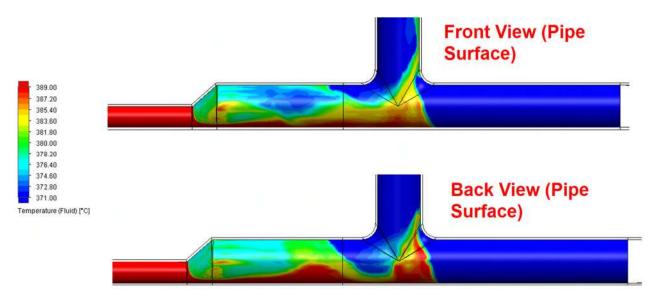


Figure n°10 : représentation de la température dans le tube (CFD analysis ExxonMobil)

VI. Conclusions sur le scénario de l'événement

VI.1 Scénario

Historiquement la ligne d'Overflash était en acier à 5%Cr. Il avait toutefois été observé qu'elle avait une vitesse de corrosion (0,35 mm/an) plus importante que prévu (0,17 mm/an) et c'est le mécanisme de corrosion qui avait motivé son remplacement, pour l'essentiel en acier inoxydable 316L, entre 2005 et 2009.

Le raccordement de la ligne d'Overflash à celle de résidu sous vide est réalisé en 2013 dans le cadre du projet Epiphany relatif à l'optimisation des raffineries Esso & Mobil. Le raccordement de l'overflash a été réalisé en acier inoxydable 316L. Seul le tronçon réducteur excentré jusqu'au Té (environ 80cm) a été réalisé en acier 5%Cr.

⁵ Une corrosion de type "mix point" est une corrosion par point de mélange

Ce raccordement est intégré à l'issu du projet dans le circuit de résidu sous vide lors de l'élaboration de la stratégie d'équipement⁶. Cette intégration a été, de ce fait, prise en compte pour le développement du plan d'inspection.

L'overflash et le résidu sous vide sont considérés comme très semblables en composition, pression et température. Pourtant, des différences existent, l'overflash est plus chaud et il n'est pas strippé⁷, les débits sont également différents. Mais le taux de corrosion propre à la tuyauterie historique d'overflash permettait de justifier tout de même d'une durée de vie estimée supérieure à 20 ans.

Le Plan d'Inspection ne prévoyait pas de mesure d'épaisseur avant l'apparition de la fuite en 2024, étant donné la circuitisation et le taux de corrosion appliqué dans la stratégie. Une mesure a toutefois été faite à proximité, mais sur un piquage et peu de temps après la construction de l'ouvrage (2015), elle n'a donc pas permis d'apporter d'information sur l'évolution de la corrosion dans cette zone.

En 2016, suite aux résultats des campagnes de mesures menées sur d'autres ouvrages, une attention particulière est portée sur les zones d'aspiration des pompes, les recirculations pompes et les coudes. Mais le circuit en résidu sous vide auquel était rattaché le tronçon de tuyauterie en acier 5%Cr véhiculant de l'overflash, n'a pas été contrôlé car la dégradation crainte n'était pas observée aux refoulements des pompes. De plus, il sera ensuite considéré que l'ensemble du circuit d'overflash a été upgradé en acier inoxydable 316L.

Entre 2013 et 2024, le tube subit un amincissement de paroi progressif en service dû à un phénomène de corrosion interne de type sulfuration à chaud par réaction des composés soufrés du fluide process avec le métal du tube. On peut estimer les pertes d'épaisseur à 9,8 mm sur une période de 11 ans, ce qui pourrait correspondre à une vitesse de corrosion de 0,89 mm/an. Cela représente une vitesse de corrosion très rapide et très largement supérieure à celle théoriquement prévue pour ce tube (0,17 mm/an).

Le 11 mars 2024, au moment de l'événement, il est vraisemblable que l'épaisseur du tube à certains endroits était de moins d'1 mm. Des opérations de nettoyage à proximité ont pu déclencher la fuite initiale (choc thermique par exemple), puis une surpression ponctuelle, a suffi à provoquer l'ouverture du tube, et à générer un incendie qui a lui-même conduit à la rupture d'un deuxième tronçon de tuyauterie exposé au flux thermique.

Les simulations réalisées sur l'écoulement des fluides infirment l'hypothèse d'une corrosion accélérée par point de mélange. La géométrie du tronçon incriminé a potentiellement pu être un facteur accélérateur de la corrosion même si les simulations d'écoulement des fluides ne permettent pas de conclure sur son impact. La température plus importante de l'overflash aurait par contre pu être un facteur contributif de la vitesse de corrosion très rapide. Il est difficile de caractériser les flux de fond de tour en matière de H_2S dissous, et donc de se positionner sur son impact sur la dégradation survenue. Enfin, la seconde rupture est la conséquence logique de l'exposition d'une tuyauterie de transport d'essence soumise aux effets du premier incendie. Son occurrence et son ampleur n'ont donc pas appelé d'investigation complémentaire.

N° MTE-BEARI-2024-06 Page 19 | 25

⁶ Pour Esso Raffinage la stratégie d'équipement se définit de la manière suivante : "Combinaison la plus rentable de taches d'opération, d'inspection et de maintenance nécessaires pour atteindre les objectifs de performance attendus de l'unité et de l'équipement avec un niveau de risque acceptable".

⁷ Le terme de strippage fait référence à un procédé de séparation dans lequel un composant volatil est retiré d'un liquide par un gaz de balayage. Le procédé est utilisé dans les raffineries pour éliminer les composés légers indésirables ou pour purifier les produits intermédiaires ou finaux.

VI.2 Facteurs contributifs

Les facteurs contributifs sont des éléments qui, sans être déterminant, ont pu jouer un rôle dans la survenance, l'atténuation ou l'aggravation de l'événement.

VI.2.1 Phénomène de corrosion à chaud de type sulfuration

Le phénomène de sulfuration à chaud en présence d' H_2S dissous est un phénomène à considérer à partir d'une température de service de 260°C (l'overflash était véhiculé à une température de 389°C), sa cinétique est difficile à prédire mais dépend notamment des facteurs suivants :

- La résistance des aciers augmente avec la teneur en chrome car le chrome participe à l'élaboration des produits de corrosion qui forment des couches protectrices en surface du matériau (couches constituées de sulfure de fer et de chrome);
- La vitesse de corrosion augmente avec la température;
- La concentration totale en soufre dans le fluide et la nature des composés organiques soufrés joue un rôle car tous les composés n'ont pas la même activité corrosive sur l'acier. Cela constitue un facteur d'incertitude important sur la prévision de la vitesse de corrosion, notamment quand, comme dans le cas de l'overflash, il n'est pas possible de suivre précisément les caractéristiques du produit;
- De la présence d'acides organiques dans le fluide (acides naphténiques que l'on peut retrouver dans l'overflash), qui ont tendance à dissoudre la couche de sulfure de fer et à accélérer la vitesse de corrosion;
- Des caractéristiques du fluide dont dépendent les contraintes de cisaillement exercées sur les couches protectrices de produits de corrosion au contact du fluide.

VI.2.2 Caractérisation de l'overflash

L'overflash est un produit difficile à caractériser car difficilement prélevable compte-tenu de sa localisation dans le process. Non échantillonnable, il n'est donc pas possible d'évaluer une évolution de sa composition dans le temps. Pourtant sa sensibilité était identifiée par l'exploitant : le produit est véhiculé à une température importante et il n'est pas strippé. De même un taux de corrosion important avait été constaté sur l'ancienne ligne d'overflash. Pourtant dans la circuitisation, le tronçon de tuyauterie en overflash a été catégorisé en résidu sous vide et par suite suivi comme tel par la stratégie d'équipement.

VI.2.3 Traçabilité des caractéristiques des équipements

Au moment du raccordement de la ligne d'overflash en 2013, le tronçon réducteur excentré jusqu'au Té, où a eu lieu la fuite, a été réalisé en acier 5%Cr alors que le reste du circuit overflash était en acier inoxydable 316L. Ce tronçon a été regroupé au même moment avec le circuit de résidu sous vide (de même nuance 5%Cr) pour le développement du plan d'inspection.

Puis compte-tenu de cette circuitisation, pendant la période d'exploitation du tronçon de tuyauterie, il n'a pas été prévu de mesures d'épaisseur qui auraient pu permettre de détecter une vitesse de corrosion plus rapide que celle prévue. En parallèle, les informations qu'une tuyauterie véhiculant de l'overflash et construite en acier 5%Cr était présente à cet endroit et qu'aucune modification liée à la mise en œuvre d'un retour d'expérience sur l'overflash n'y avait été réalisée, n'étaient plus accessibles aisément.

VII. Enseignements de sécurité

VII.1 Caractérisation de l'overflash

L'overflash est un produit qui peut évoluer en fonction du process et des produits d'entrée, mais difficilement échantillonnable. Il serait toutefois intéressant de mieux connaitre ses caractéristiques, leurs évolutions possibles dans le temps et leur impact sur la vitesse de corrosion de l'acier, pour mieux caractériser les durées de vie des matériaux à son contact.

VII.2 Suivi des installations dans le temps

Malgré la connaissance de la sensibilité du produit, et de sa présence à cet endroit du process, le tube n'a pas été construit en acier inoxydable, et n'a pas été identifié comme à risque dans les études menées postérieurement à sa construction. Le suivi des installations et de leurs évolutions dans le temps est une opération délicate car minutieuse et nécessitant un lourd investissement en ressources humaines mais c'est un travail indispensable pour la maitrise des risques.

VII.3 Vieillissement des ouvrages

La connaissance théorique des vitesses de corrosion des matériaux en fonction des produits transportés a beaucoup évolué et est maintenant robuste. Toutefois, la variabilité de certains facteurs ne peut être exclue et peut remettre en cause les prévisions. Le monitoring du vieillissement des ouvrages doit rester un sujet de vigilance et de réflexion.

VIII. Recommandations de sécurité à destination de l'exploitant

Le BEA-RI recommande à l'exploitant de mettre en œuvre jusqu'à son terme son plan d'action. À savoir :

- Remplacement de l'acier à 5%Cr du circuit d'overflash par de l'acier inoxydable;
- Réalisation et mise en œuvre d'un plan de contrôle de tous les circuits de fond de tour sous vide en acier carbone ou 5%Cr et remplacement en cas de besoin;
- Revue des stratégies d'équipement de tous les équipements de l'usine potentiellement soumis à ce mode de dégradation;
- Étude de la possibilité d'abaisser la température des produits de fond de tour;
- Partage du retour d'expérience de l'événement avec les autres sites ExxonMobil.

IX. Annexes

Annexe 1	Rapport technique Institut de Soudure	23
Annexe 2	Gravenchon Computational Fluid Dynamics analysis	24

Annexe 1 Rapport technique Institut de Soudure

Affaire suivie par: VLP - E3C ZI PARIS NORD 2 93420 VILLEPINTE Tel 0149903600

EXXONMOBIL CHEMICAL FRANCE

Rue du Président Kennedy
76330 NOTRE DAME DE GRAVENCHON
A l'attention de : Monsieur Feth-Allah SETTA

8CO/4510669009 du 03/04/2024

RAPPORT TECHNIQUE

Raffinerie ExxonMobil de Port-Jérôme Expertise métallurgique d'un tronçon rompu de la ligne 8" PJR-L-VPS018BC015 en acier allié à 5%Cr Incendie unité 17-1

Commande N°:

AFFAIRE

Client: EXXONMOBIL CHEMICAL FRANCE

Offre N°: OFF-24-ISI25392-VC0E3

du 28/03/2024

	Nom	Nº carte	Date	Visa			
Rédigé par	M. MONTALBETTI	0102	17/05/2024	Signature numérique de MONTALBETT Date: 2014/05/17 14:48:59 +02:00"			
Co-rédigé et Vérifié par	A. LE GUELLAUT	2783	17/05/2024	Signature numérique de LE GUELLAUT Anthony Date: 202405,17 145 250 +02°0′			

SOMMAIRE

ANNE	XES	2
	OBJET	
 2.	PIECE REMISE ET INFORMATIONS TRANSMISES	
3.	DOCUMENTS DE REFERENCE	4
1.	TRAVAUX REALISES	5
5.	MODALITES D'EXAMEN	
5.	RESULTATS	
6.1.		
6.2.		
6.3.		
6.4.	SCAN 3D – NUMERISATION LASER DU TUBE 8"	10
6.5.	Examen visuel interne	11
6.6.	EXAMEN METALLOGRAPHIQUE	12
6.7.		
6.8.	Analyses chimiques par SEO	14
6.9.	Microanalyses EDS en zone fondue de la soudure te / tube 8"	14
6.10	D. ESSAIS MECANIQUES EN METAL DE BASE DU TUBE 8"	15
6.11	•	
6.12		
6.13	3. Analyse par DRX du depot interne	16
7.	SYNTHESE DES RESULTATS	17
3.	CONCLUSION	18

ANNEXES

Nature des travaux	Référence d'annexe
Examen visuel externe	A
Cartographie d'épaisseur par méthodes ultrasonores	В
Scan 3D – numérisation laser après découpe longitudinale	С
Examen visuel interne	D
Examen métallographique	E
Mesures de dureté sur coupes	F
Analyses chimiques	G
Microanalyses EDS en métal fondu de la soudure té / tube 8"	Н
Essais mécaniques	I
Examen fractographique	J
Microanalyses EDS du dépôt et de la couche internes	K
Analyse par DRX du dépôt interne	L

1. OBJET

Examen d'un tronçon de tuyauterie rompu afin de :

- De déterminer, dans la mesure du possible, la nature et l'origine de la rupture ou du percement survenu dans la paroi du tronçon de ligne.
- D'indiquer, dans la mesure du possible, si ces désordres résultent de mécanismes d'endommagement antérieurs à l'incendie (corrosion notamment, interne/externe...).
- De déterminer s'il y a des indices montrant que l'ouverture a pu être favorisée/causée par des phénomènes autres engendrés au moment de l'incendie (échauffement du matériau par exemple).
- De vérifier les caractéristiques mécaniques et métallurgiques du tube 8" retrouvé rompu.

2. PIECE REMISE ET INFORMATIONS TRANSMISES

Le 29/03/2024 nous avons réceptionné en nos laboratoires de Paris Nord 2 un tronçon de la ligne PJR-L-VPS018BC015. Cette ligne 8" contient un stream d'Overflash provenant de la tour de distillation sous vide T801 en direction de l'équipement E733C. Le tronçon présente une rupture ou déchirure située en partie courante de tube survenue lors de l'incendie du 11/03/2024 dans l'unité de distillation de l'unité 17-1 de la raffinerie EXXONMOBIL de Port-Jérôme-sur-Seine. D'après le dossier constructeur remis [1], la ligne a été installée en 2012 et a subi une épreuve hydraulique à l'issu de sa fabrication le 22/02/2012.

Le tronçon d'une longueur totale 900 mm qui nous a été remis, est constitué d'une bride 4" de diamètre extérieur 250 mm, d'une réduction excentrique 4"x8" et d'un tube 8" d'une longueur de 625 mm comportant en génératrice basse une semelle et un support tubulaire ainsi qu'un piquage 3/4" équipé d'une vanne de purge, voir FIGURE 1 en annexe A. Le tube 8" présente une déchirure située dans un secteur horaire 8h-10h et de dimension 160x90 mm environ. La figure suivante montre une vue plus étendue de la tuyauterie dont la partie qui nous a été remise est délimitée par des traits pointillés rouges. Sur cette photo prise sur site par ExxonMobil avant expédition du prélèvement, nous avons reporté les caractéristiques des éléments constitutifs du tronçon de ligne (dimensions, nuance du matériau, numéro de soudure) sur la base des données du dossier constructeur [1].

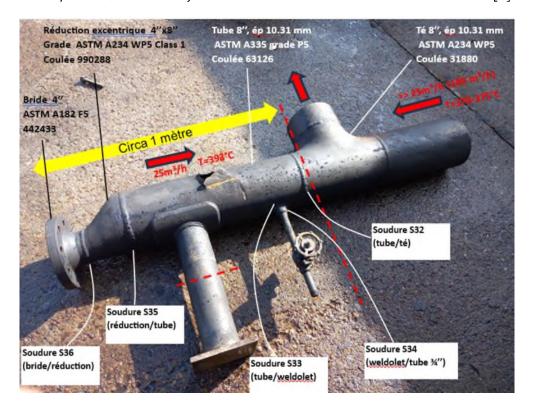


Figure 1 : vue du tronçon de tuyauterie rompu avec description des éléments constitutifs

La partie de ligne 8" retrouvée rompue après le sinistre est constituée d'un tube en acier allié à 5% de chrome, de nuance ASTM A335 grade P5, et d'épaisseur nominale de paroi 10,31 mm. D'après les photos prises sur site, cette tuyauterie était calorifugée. Selon les informations communiquées par la société EXXONMOBIL CHEMICAL France, les conditions de service de la ligne 8" sont les suivantes :

- Nature du fluide « stream d'overflash » :
 - Liquide constitué d'hydrocarbures
 - Absence d'eau, pas d'hydrogène H₂
 - Présence potentielle d'acides naphténiques
 - Possibilité de formation d'une phase gazeuse en aval de la réduction (H₂S)Concentration en H2S : <
 0,5 mg/kg, environ 25 ppm. Concentration en soufre total : 1,7%
 - Teneur en métaux : V ≈ 19 ppm ; Ni ≈ 5 ppm ; Fe ≈ 4 ppm ; Na ≈ 2 ppm
- Température de fluides :
 - Fluide venant de la réduction excentrique : T = 393°C
 - Fluide venant du côté du té : T = 370-375°C
- Débits :
 - Fluide venant de la réduction excentrique : environ 25 m³/h (soit une vitesse d'écoulement moyenne de 0,22 m/s)
 - Fluide venant du côté du té : environ 180 m³/h (soit une vitesse d'écoulement moyenne de 1,61 m/s)
- Pression maximale admissible : 31,2 bar
- Pression de service : 18,5 bar (plutôt 10 bar en conditions opératoires)
- Température maximale admissible : +415°C
- Température minimale admissible : -12°C
- Température de service : 360°C 395°C.

Après prélèvement par EXXON des éventuels dépôts utiles à la compréhension des désordres, un nettoyage des surfaces souillées par les hydrocarbures a réalisé sur site préalablement à l'expédition du tronçon dans nos laboratoires (décontamination des prélèvements pour retirer les résidus toxiques ou CMR). Un échantillon du dépôt prélevé avant nettoyage nous a également été remis pour analyses, voir FIGURE 1 en annexe K.

3. DOCUMENTS DE REFERENCE

Documents transmis par ExxonMobil

- [1].« Dossier ligne réglementée, repère ligne HC 810 001 A », FOURE LAGADEC Agence de LILLEBONNE, révision 0 du 13/09/2010.
- [2].Rapport d'analyse n°2022-SRC-1871-03 du 03/06/2022, INTERTEK
- [3].PID AA00113P

Documents normatifs ou articles

- [4].ASTM A182/A182M-13 "Standard Specification for Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service", mai 2013
- [5].ASTM A 234/A 234M-04 "Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service", mai 2004
- [6].API 571, "Damage Mechanisms Affecting Fixed Equipment in the Refining Industry",
- [7].API 939-C, "Guidelines for avoiding sulfidation (sulfidic) corrosion failures in Oil refineries", second edition, January 2019.
- [8]. Sulfidic corrosion in refineries A review, Raul B. Rebak, Corrosion Reviews · October 2011

4. TRAVAUX REALISES

Conformément à la demande de la société EXXONMOBIL CHEMICAL France et selon notre proposition de prix OFF-24-ISI25392-VC0E3 du 28/03/2024, nous avons mis en œuvre les investigations suivantes :

1. Poste 1: Examens non destructifs (END)

- 1.1. Examens visuels d'ensemble et de détail des surfaces externes de l'élément de tuyauterie; relevé de tout endommagement des surfaces externes (état de corrosion, cratères...etc...); examen des zones de rupture avec relevé de leurs caractéristiques morphologiques et dimensionnelles ; réalisation de quelques relevés dimensionnels : diamètre de tube, y compris au niveau des zones rompues (pour observation éventuelle d'un gonflement ou de déformation plastique), longueur, largeur des zones de rupture, mesure d'épaisseur de paroi le long des lèvres des zones rompues (au micromètre) ; prises de photographies de l'élément en l'état de réception.
- 1.2. Après examen visuel, une préparation de surface (brossage mécanique avec une brosse rotative pour enlever les reliquats d'oxydes et/ou les résidus brulés externes) a été nécessaire pour mettre en œuvre les END.
- 1.3. Réalisation par l'extérieur de mesures d'épaisseur de paroi sur le tronçon de tube droit et sur la réduction excentrique. Ces mesures ont été effectuées :
 - avec des points de mesures réalisés en UT manuel mono-élément non encodé sous forme d'un maillage adapté au diamètre (selon 8 génératrices réparties sur la circonférence avec une mesure tous les 25 mm dans le sens de la longueur du tube et de la réduction),
 - sous forme de cartographies encodées avec un pas de 0,5mm en ultrasons conventionnels mono-élément (OL 0°) avec représentation de type C-Scan et B-Scan.
- 1.4. Réalisation d'une numérisation laser (scan 3D) des surfaces internes/externes du tube 8" et de la réduction excentrique 4"x8" après ouverture longitudinale de ces éléments afin d'obtenir des cartographies d'épaisseur résiduelles de paroi sur 100% des surfaces, ainsi qu'une estimation du volume interne des éléments endommagés.

2. Poste 2 : Examens destructifs de caractérisation des dommages

- 2.1. Découpe et ouverture longitudinale du tronçon de ligne en deux moitiés pour examen interne. Examens visuels de l'état interne au droit de la zone de rupture et à l'écart ; prises de photographies. Un examen complémentaire particulier a été effectué au niveau du piquage ¾".
- 2.2. Observation morphologique des bords des zones de ruptures/percements sous binoculaire, prélèvement de zones d'intérêt pour examen en microscopie électronique à balayage (MEB); mise en évidence de tout indice permettant d'identifier le mode de rupture (lèvres de rupture avec indice de cisaillement et/ou déformation locale, présence de faciès à cupules par exemple). Un examen sous binoculaire a aussi été effectué au niveau du piquage ¾".
- 2.3. Microanalyses EDS semi-quantitatives du dépôt recueilli dans le tube. Les analyses EDS permettent d'avoir la composition élémentaire des dépôts, à la fois la nature des éléments présents (par exemple, Fe, O, S, C, Cl...etc...) et leur concentration locale. La limite de détection est de 0,1% en concentration massique (les éléments inférieurs à cette concentration ne sont pas détectés dans les dépôts).
- 2.4. Réalisation d'une filiation de microanalyses EDS dans le métal fondu d'une soudure de raboutage, depuis la passe de racine jusqu'à la passe de remplissage. Analyse et quantification des éléments Fe, Mn, Si, Cr, Ni, Mo.

- 2.5. Analyse qualitative par diffraction X des échantillons de dépôt interne prélevé dans le tube pour identification de la nature des phases cristallines en présence (Fe₂O₃, FeS...etc...). Cette analyse a été sous-traitée à la Société Française de Céramique.
- 2.6. Examens métallographiques sur coupes interceptant les bords des zones de rupture (2 coupes); mesures de dureté Vickers; mise en évidence des phénomènes ayant conduit au percement (corrosion interne, phénomène de fissuration ou autre endommagement); examen des microstructures des matériaux, mise en évidence de tout indice d'évolution, de transformation pouvant être lié à une élévation de température du métal (incendie).
- 2.7. Examens métallographiques et mesures de dureté sur 5 coupes prélevées à différents endroits du tronçon en dehors de la zone de rupture au niveau de soudures présentes sur le tronçon et du piquage ¾" pour examen des microstructures/niveaux de dureté et mise en évidence de tout indice d'évolution, de transformation pouvant être lié à une élévation de température du métal (incendie).

<u>Nota 1</u>: Les découpes ont été réalisées à la disqueuse manuelle pour l'ouverture du tube 8", avec une machine de sciage pour celle de la partie réduction- bride et une tronçonneuse métallographique de laboratoire pour les découpes secondaires.

3. Poste 3 : Essais destructifs de caractérisation matière

- 3.1. Essais mécaniques de traction à température ambiante (20°C) selon NF EN ISO 6892-1 ou ASTM E8/E8M, sur une éprouvette prismatique prélevée dans le tube dans le sens longitudinal ; détermination des grandeurs conventionnelles Rp02% ou ReH, Rm et A%.
- 3.2. Essais mécaniques de flexion par choc à température ambiante (20°C) selon NF EN ISO 148-1 ou ASTM E23 sur un jeu de 3 éprouvettes Charpy à entaille en V prélevées dans le tube dans le sens longitudinal avec une épaisseur réduite adaptée à l'épaisseur de paroi disponible ; détermination de l'énergie de rupture du matériau.
- 3.3. Analyse chimique par spectrométrie d'émission optique à l'arc du métal de base du tube rompu et du métal fondu d'une soudure de raboutage (en dernière passe de remplissage) avec des dosages des éléments C, Mn, Si, S, P, Cr, Ni, Mo, Ti, V, Nb, Al, N et Cu.

Nota 2 : Le programme prévisionnel d'essais initialement prévu a été adapté en fonction de la configuration et de l'état général du tronçon qui nous a été remis. En particulier, les essais mécaniques n'ont pu être réalisés que dans la partie du tube présente sous la semelle du support ; l'épaisseur résiduelle trop faible des autres parties du tube ne permettant pas d'y usiner des éprouvettes.

5. MODALITES D'EXAMEN

Relevé dimensionnel:

Les mesures d'épaisseur sur les bords de la déchirure et en extrémité du tube côté soudure de raboutage tube / té, ont été réalisées à l'aide d'un palmer (micromètre) à touches sphériques référencé BPISS001856/03104761 et d'un palmer à touches coniques référencé PBISS006398/920993400.

Relevé d'épaisseur par UT:

Les conditions opératoires de ces mesures sont indiquées PAGE 3 en annexe B.

Examen métallographique :

Les coupes métallographiques ont été enrobées et polies à l'aide papiers abrasifs avec finition à la pâte diamantée. Les examens macrographiques ont été réalisées après attaque chimique avec une solution aqueuse de perchlorure de fer, les examens micrographiques après attaque chimique avec une solution d'acide nitrique à 4% dans l'éthanol (nital).

6. RESULTATS

6.1. Examen visuel externe en l'état de réception

En l'état de réception à nos laboratoires, la surface externe du tronçon de ligne présentait un aspect gris noirâtre avec des reliquats subsistant d'hydrocarbures partiellement brûlés, voir FIGURES 1 à 8 en annexe A. Une préparation de surface (brossage mécanique avec une brosse rotative nylon) a été nécessaire pour mettre en œuvre les END, voir FIGURES 20 à 22 en annexe A.

Plusieurs marquages fabricant sont observés après nettoyage en surface externe du tronçon :

- sur le pourtour de la bride : R 11/00 MFF 4"300 B16 SA/A182 F5 XS 51716 ITALY, voir FIGURES 15 à 17 en annexe A,
- sur la réduction: 8X4 XS WP5 CL1990288, voir FIGURE 18 en annexe A,
- sur le tube : une marque de poinçon illustrée FIGURE 19 en annexe A.

Le marquage de la bride indique qu'il s'agit d'une pièce en acier allié à 5%Cr de nuance F5 approvisionnée selon le standard ASTM A182/A182M-13 [4]. Le marquage de la réduction indique également un acier allié à 5%Cr de nuance WP5 selon le standard ASTM A 234/A 234M-04 [5]. Le tube rompu quant à lui ne porte pas de marquage d'origine permettant de confirmer la nuance de l'acier.

L'examen visuel des bords fortement amincis de la déchirure et des surfaces internes visibles par l'extrémité côté té, montre que le tube 8" est affecté par une perte d'épaisseur interne importante, voir FIGURES 7 et 10 à 12 en annexe A. L'inspection visuelle externe du tronçon ne révèle pas de dégradation significative de la surface externe du tronçon de tuyauterie remis (absence notamment de corrosion externe sous calorifuge).

6.2. Relevés dimensionnels

Le tube 8" n'a pas subi de déformation plastique d'ensemble (gonflement sous pression interne) préalablement à sa rupture. En effet, les premières mesures faites avant retrait des résidus d'hydrocarbures montrent que le diamètre externe relevé au pied à coulisse reste compris entre 218 et 220 mm d'un bout à l'autre de la partie droite, voir FIGURE 1 en annexe A. Les valeurs relevées sont donc proches du diamètre externe nominal qui doit être de 219,1 mm pour un tube 8".

Quelques relevés d'épaisseur au niveau de l'extrémité du tube proche de la soudure de raboutage avec le té, montrent des pertes d'épaisseur importantes par l'intérieur, voir FIGURE 10 en annexe A. Les épaisseurs résiduelles de paroi à ce niveau vont d'un minimum de 1,26 mm à un maximum de 5,87 mm, pour une épaisseur nominale annoncée de 10,31 mm.

Les relevés effectués au micromètre à touche sphérique au niveau de la zone de rupture révèlent des épaisseurs résiduelles de paroi inférieure à 1 mm (valeurs allant localement d'un minimum de 0,53 mm à environ 0,95 mm), voir FIGURE 12 en annexe A. Il manque une partie de la paroi au centre de la zone de rupture, celle-ci pouvait avoir des épaisseurs résiduelles encore inférieures.

6.3. Mesures d'épaisseur par ultrasons

Tous les résultats relatifs à ces mesures sont consignés en détail dans le rapport joint en annexe B. Les tableaux suivants présentent les épaisseurs de paroi relevées ponctuellement selon un maillage sur le tube 8" entre les soudures S35 (réduction/tube) et S32 (tube/té) ainsi que sur la réduction entre les soudures S36 (bride/réduction) et S35 (réduction/tube), 0° correspondant à la génératrice haute du tronçon :

		S35			D	istanc	e à l'o	origine	e (mm) en p	artant	t du pi	ed de	cordo	n ext	erne (selon	sens	du flu	ide de	s sou	dures	S35 à	S32)			S32
		0	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625
	0	4,8	3,7	2,8	2,6	2,2	1,9	1,5	1,7	1,7	1,9	1,5	1,2	2,2	1,5	1,5	1,5	1,5	1,5	1,5	1,8	2,6	2,7	3,7	4,1	5,6	6,5
	45	4,4	3,4	2,3	2,0	1,8	1,1	1,3	1,7	1,3	1,4	1,4	2,0	1,3	1,3	1,0	1,1	1,6	1,3	1,3	1,5	1,9	1,6	2,0	3,0	3,7	5,0
6	90	3,5	2,6	1,6	1,6	2,0	1,5	1,1	1,7	1,4	1,5	2,1	2,0	1,6	1,3	1,6	1,9	1,7	1,3	1,1	1,4	1,3	1,6	1,6	2,1	2,1	2,4
trice	135	3,9	3,2	3,2	s	s	s	s	s	S	S	S	S	2,9	2,8	2,1	1,5	1,5	1,2	1,5	1,3	1,5	1,4	1,6	1,8	1,8	1,5
Génératric	180	3,6	3,3	3,9	s	s	S	S	S	s	s	s	s	3,1	2,6	2,3	1,7	1,6	1,8	2,2	2,0	W	W	W	2,4	2,0	1,6
Gé	225	4,7	4,3	4,3	s	S	S	S	S	S	s	S	s	2,7	2,3	1,9	1,7	1,6	2,1	2,3	2,3	2,3	2,4	2,3	2,3	2,4	2,4
	270	4,9	4,6	3,8	2,9	2,9	2,7	2,9	2,5	2,1	2,1	2,4	2,5	2,2	1,5	2,2	1,9	2,2	2,2	2,6	2,1	2,4	3,1	3,1	3,5	3,7	3,7
	315	5,2	3,7	2,9	2,4	2,3	2,1	2,3	1,9	1,5	1,8	1,8	1,3	1,7	1,3	1,4	1,9	2,2	1,6	1,7	1,9	2,0	3,4	3,3	3,9	4,1	5,4

S : platine renfort du tube-support en partie basse

W : weldolet du piquage ¾" en génératrice basse

Valeurs surlignées en orange : valeurs mesurées de part et d'autre de la zone de rupture du tube

Tableau 1 : épaisseurs résiduelles de paroi du tube (en mm)

		Soudure S36				ant du pied o s soudures S		Soudure S35					
		0	25	50	75	100	125	140	150	170	175		
	0	nm	17,5	17,4	16,3	14,5	12,0		11,6		8,7		
	45	nm	17,3	17,0	15,6	14,1	11,5		10,1	7,8			
6)	90	9,5	14,0	13,0	12,8	10,1	9,4		7,8				
trice	135	5,3	7,6	9,7	9,8	8,0	7,2	6,8					
Génératrice	180	3,8	3,5	3,2	8,2	8,6	8,1	7,0					
Gél	225	7,6	8,7	10,2	10,2	9,5	8,3		8,0				
	270	10,4	14,9	14,2	13,1	11,6	10,7		8,5				
	315	nm	17,3	16,9	15,7	13,7	11,4		10,5	8,3			

nm : non mesurable en raison de la géométrie interne de la pièce

note: La réduction excentrique présentant des génératrices de longueurs variables, le dernier point de mesure au niveau du pied de cordon de la soudure S35 se situe selon les cas à 140 mm (pour les génératrices les plus courtes en partie basse de la réduction) ou 175 mm (pour la ligne de mesure située en position haute) du point zéro.

Tableau 2 : épaisseurs résiduelles de paroi de la réduction excentrique (en mm)

Au regard de l'épaisseur nominale annoncée de 10,3 mm, le tableau 1 met en évidence une diminution très importante de l'épaisseur du tube 8" avec des épaisseurs minimales relevées de l'ordre de 1,1-1,3 mm seulement. On observe cependant des épaisseurs résiduelles un peu plus élevées, de l'ordre de 3 à 4 mm autour de la semelle du support en génératrice basse. Des épaisseurs maximales de l'ordre de 5 à 6 mm ont été relevées à proximité des soudures de raboutage S35 et S32.

La figure 2 ci-dessous extraite du rapport en annexe B représente la cartographie de type C-scan reconstruite à par des acquisitions UT encodées réalisées sur 28 génératrices du tube 8" (une génératrice tous les 25 mm, ou tous les 13° environ). Elle permet déjà de visualiser de façon plus complète les épaisseurs de paroi résiduelles du tube selon la longueur (valeurs en abscisse) et le développé du tube (échelle à gauche en ordonnée). La référence 0 mm (ou 0°) en ordonnée correspond à la génératrice supérieure du tronçon de tuyauterie. L'échelle à droite en ordonnée représente l'épaisseur résiduelle (en mm) associée à un code couleur (du rouge au bleu).

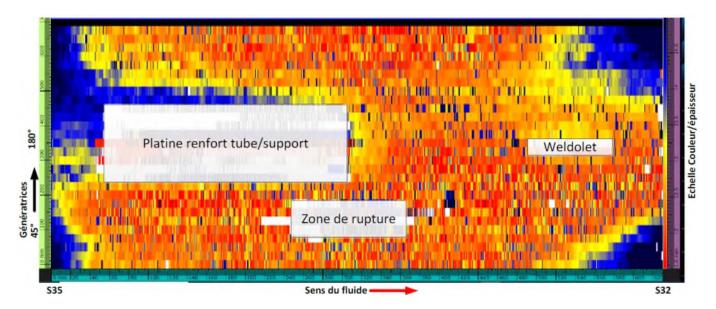


Figure 2 : cartographie d'épaisseur résiduelle du tube 8" rompu

Cette cartographie (cohérente avec les résultats des mesures ponctuelles suivant le maillage) met en évidence une diminution d'épaisseur généralisée quasiment sur l'ensemble du tube 8" avec une épaisseur résiduelle moyenne estimée à environ 2 mm (pour une épaisseur théorique nominale de 10,31 mm). Comme constaté lors des mesures ponctuelles, on note que le phénomène de perte d'épaisseur est moins important à proximité des soudures S32 et S35 (épaisseur à proximité de cordon comprise entre 3 et 5 mm), ainsi qu'autour de la semelle renfort (ou platine) du support.

En complément, le rapport en annexe B présente également des vues en coupe B-Scan montrant le profil d'épaisseur de paroi sur les 28 génératrices ayant fait l'objet d'acquisition, avec des mesures plus précises des épaisseurs minimales de paroi. Ces mesures mettent en évidence :

- des épaisseurs résiduelles minimales de paroi comprises entre 0,5 et 1,05 mm sur le tube 8" (cohérentes avec les meures faites autour de la zone de rupture au micromètre), voir PAGES 7 à 12 en annexe B,
- des épaisseurs variant de 2,6 mm en génératrice basse de la réduction à 18,3 mm en génératrice haute de celle-ci, voir PAGES 13 et 14 en annexe B. Il s'agit là de valeurs voisines de celles présentées par le tableau 2.

Remarque: par rapport au phénomène d'endommagement identifié à l'issu de nos investigations (corrosion à chaud de l'acier de type sulfuration par les composés soufrés du fluide) et responsable de l'amincissement de paroi, les épaisseurs résiduelles plus importantes constatées au voisinage des soudures sont liées à la meilleure résistance des cordons de soudures à la sulfuration, celles-ci ont eu un effet protecteur ou écran sur le métal de base environnant sans doute par rapport à l'action de l'écoulement du fluide (les cordons étant proéminents par rapport aux surfaces environnantes).

Concernant l'amincissement moindre de la paroi du tube 8" au droit de la semelle support, il s'agit là probablement d'un effet thermique. La paroi du tube 8" au niveau de la semelle est possiblement à une température plus faible, du fait de la présence du tube support dépassant du calorifuge qui évacue des calories. La vitesse de sulfuration à chaud dépendant de la température, cela peut être une cause de la perte d'épaisseur plus faible à ce niveau.

6.4. Scan 3D - Numérisation laser du tube 8"

Le rapport de scan 3D est consultable en annexe C, il présente en détail le matériel utilisé, les conditions d'acquisition et les résultats obtenus. On rappelle que la numérisation du tube 8" et de la réduction à l'aide a été réalisée après :

- prélèvement du piquage 3/4" en incluant une petite partie de dimensions 85x85 mm en partie basse du tube 8", voir FIGURES 3 et 4 en annexe C,
- découpe transversale du tube support inférieur à environ 10 mm de la semelle ou selle-renfort,
- séparation de la réduction excentrique et du tube 8" par découpe côté tube à environ 10 mm de la soudure S35,
- ouverture longitudinale de ces deux parties du tronçon par découpe le long des génératrices hautes et basse (en passant par l'axe du tube support et la mi-largeur de la semelle ou selle renfort), voir FIGURES 1, 2 et 10 en annexe D.

Les figures 3 et 4 ci-dessous extraites de l'annexe C montrent les cartographies d'épaisseur résiduelles de paroi du tube 8" sur les deux moitiés de tube scannées après post-traitement des données.

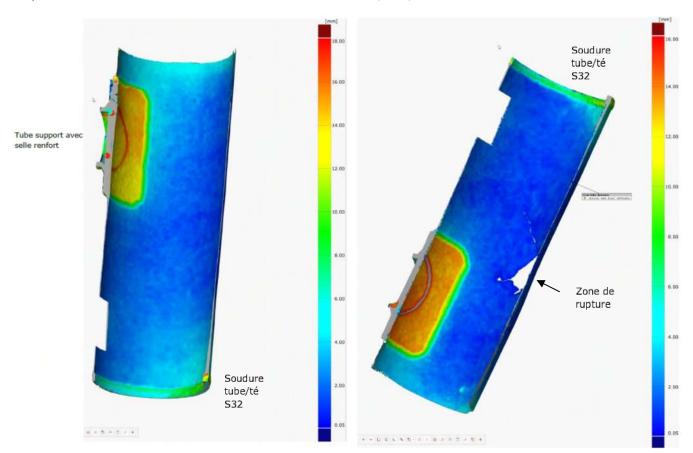


Figure 3 et Figure 4 : épaisseurs résiduelles de paroi du tube 8" (en mm)

Les résultats sont encore une fois cohérents avec les mesures obtenues via les techniques ultrasonores. Les valeurs d'épaisseur minimales de paroi relevées en numérisation laser sur le tube 8" sont comprises entre 0,75 mm et 1,75 mm (il faut rappeler à ce niveau que la technique ultrasonore permet normalement de ne mesurer que l'épaisseur résiduelle de métal, alors qu'en numérisation laser, on inclut également dans l'épaisseur résiduelle

les couches de dépôts ou de produits de corrosion, ce qui peut engendrer des écarts entre les deux techniques). On observe que la paroi du tube est très amincie dans toute sa partie centrale, et là encore que les épaisseurs résiduelles sont un peu plus importantes dans le métal de base du tube, au voisinage des cordons de soudure S35 et S32, et au niveau du cordon de soudure tube/té en lui-même (soudure S32) où l'épaisseur va de 4 mm à 10, voire 12 mm.

Le volume interne total mesuré dans le tube 8" est estimé à 22 252cm3.

Les figures 5 et 6 ci-dessous extraites de l'annexe C montrent les cartographies d'épaisseur résiduelles de paroi de la réduction 4"x8" sur les deux moitiés scannées après post-traitement des données.

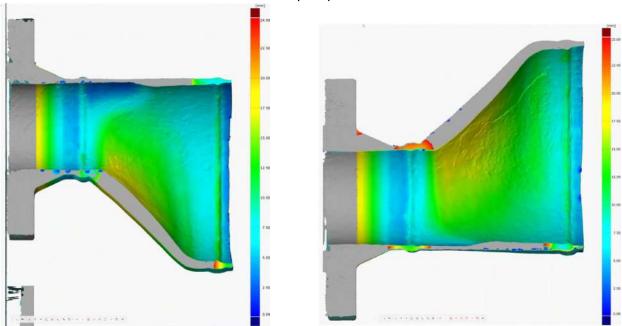


Figure 5 et Figure 6 : épaisseur de paroi de la réduction 4"x8" (en mm)

La réduction présente une géométrie complexe avec des variations importantes d'épaisseur qui sont d'origine (liées au formage de la matière). Les résultats de la numérisation montrent ici, sur le petit morceau de tube 8" scanné, une épaisseur résiduelle de paroi en métal de base de l'ordre de 4 à 6 mm au voisinage de la soudure S35 (soudure réduction/tube) et là encore, on constate qu'il y a eu une perte de métal plus faible au niveau du cordon de soudure en lui-même (épaisseur de l'ordre de 10-12 mm).

Le volume interne total mesuré dans la réduction est estimé à 3997 cm³.

6.5. Examen visuel interne

L'examen visuel interne après découpe met en évidence différents états de surface à l'intérieur du tronçon :

- des zones de métal à nu aux colorations grisâtres (métal mis à nu sans doute par le décapage haute pression réalisé sur site),
- des zones avec des colorations rouille au droit de traces d'oxydation (oxydation vraisemblablement superficielle survenue à la suite du lavage à l'eau des surfaces sur site),
- et des surfaces majoritairement noirâtres correspondant à des zones recouvertes de reliquats de dépôts plutôt adhérents, voir FIGURES 1 et 2 en annexe D.

Mis à part le côté interne de la soudure tube 8" / weldolet qui présente une surface lisse associée à une probable perte d'épaisseur notable, le piquage 3/4" ne présente pas de signe d'endommagement significatif et son épaisseur semble conservée au niveau du weldolet comme du tube 3/4", voir FIGURES 13 et 14 en annexe A ainsi que FIGURES 3 à 9 en annexe C.

Le côté interne de la soudure tube 8"/ té (S32) présente en partie un aspect corrodé avec une surface irrégulière recouverte de dépôt (voir FIGURES 11 et 12 en annexe D) ou bien apparait plutôt lisse et brillant (voir FIGURE 13 en annexe D). L'intérieur de la soudure tube 8"/réduction (S35) présente une morphologie en triangle avec des côtés lisses et une sorte d'arête dans l'axe de la soudure, et la partie côté tube est fortement amincie, voir FIGURES 16 à 18 en annexe D. Comme évoqué précédemment dans le rapport, les cordons de soudure restent proéminents par rapport aux surface corrodés environnantes, ils ont donc bien été endommagés mais ont mieux résisté que les métaux de base. Par ailleurs, l'aspect lisse de certaines zones des cordons et leur morphologie particulière (en triangle avec arête centrale) sont vraisemblablement liés à un effet de l'écoulement du fluide (contribution sur la perte d'épaisseur).

Ces constats visuels nous ont amené à situer de la manière suivante les coupes métallographiques et autres essais ou examens (dont les résultats sont indiqués aux paragraphes 6.6 à 6.11 du présent rapport) :

- Au droit du piquage inférieur 3/4" : coupes C1 et C2
- Au droit de la déchirure : coupes C3 et C4 + examen fractographique
- Au droit de la soudure tube / té en génératrice haute : coupe C5 + analyse chimique en dernière passe de la soudure + microanalyses sur coupe en zone fondue
- Au droit de la soudure tube / réduction en génératrice haute : coupe C6
- En métal de base du tube recouvert par la semelle : coupe C7 + essai de traction + essai de résilience (1 jeu de 3 éprouvettes d'épaisseur réduite) dans une zone d'épaisseur d'environ 4 mm.

La localisation des coupes métallographiques, des éprouvettes d'essais mécaniques et des autres essais est précisée FIGURE 10 en annexe D.

Nota 3 : Il n'a pas été possible de réaliser un 2ème essai de traction (ou encore un 2ème jeu d'éprouvettes de résilience) à proximité du piquage 3/4" en raison de la faible **épaisseur résiduelle associée à l'inégalité de la** surface interne, voir en FIGURES 1 et 2 de l'annexe I l'ébauche d'éprouvette de traction d'épaisseur maximale 2,45 mm réalisée à cet endroit.

6.6. Examen métallographique

La coupe C1 réalisée en partie basse du tube 8" à proximité du piquage 3/4" met en évidence une épaisseur résiduelle comprise entre 1,7 et 2,2 mm ainsi qu'un dépôt interne d'une épaisseur variant de 25 à 55 µm, voir FIGURE 1 en annexe E.

La coupe C2 transversale au tube et diamétrale au piquage 3/4" met en évidence :

- une perte d'épaisseur par corrosion du métal fondu de la soudure tube 8"/weldolet, voir FIGURES 5, 6 en annexe D
- des dépôts internes noirâtres à l'intérieur du tube ¾" associées à des couches plutôt grises brunâtres voir FIGURE 7 en annexe C ainsi que FIGURES 6, 13, 14, 23 et 24 en annexe D. Il s'agit probablement de dépôts similaires à ceux analysés en EDS (dépôt prélevé sur site par Monsieur SETTA) et de la couche interne analysée en EDS sur la coupe C1,
- des signes peu profonds d'un mécanisme s'apparentant à de la fatigue thermique (associée à une corrosion) en peau interne de la soudure weldolet / tube ¾" et du tube ¾", voir FIGURES 6, 14 et 24 en annexe D.

Les coupes C3 et C4 situées sur les bords de la déchirure mettent en évidence des épaisseurs résiduelles variant de 0,8-1,1 mm à 0,6-0,7 mm voire 0,2-0,4 mm seulement sur les bords de rupture, voir FIGURES 25 à 26, 31 et 21 en année E. Les bords rompus présentent une déformation locale et un allongement des grains (striction) sur une longueur plus importante sur la coupe C4 située en zone de propagation de la déchirure que sur la coupe C3 interceptant un bord plus aminci, voir FIGURES 28, 33 et 34 en annexe E. La morphologie des bords de la déchirure apparaît caractéristique d'une rupture ductile associée à un cisaillement pour la coupe C4.

Les coupes C5 et C6 réalisées au droit des soudures de raboutages tube 8"/ té et tube 8"/ réduction mettent là encore en évidence un amincissement du tube avec des épaisseurs de 5,8 et 4,6 dans les plans de coupe, voir FIGURES 37 et 46 en annexe E. Si les épaisseurs des zones fondues de 10,9 et 10,5 mm sont probablement proches de celles d'origine après soudage, le profil de la soudure tube 8"/réduction témoigne bien d'une altération interne du tube.

La coupe C7 interceptant la soudure tube 8"/semelle longitudinalement au tube 8", met en évidence l'inégalité de la surface interne du tube ainsi qu'une fissure oxydée amorcée en extrémité de l'interstice tube / semelle et propagée de manière rectiligne en zone fondue sur une longueur de 1,8 mm, voir FIGURES 57 à 60 en annexe E. La morphologie de cette fissure et son état d'oxydation indique qu'il s'agit fort probablement d'une fissure de fatigue apparue et développée en service et préexistante à l'incendie (fatigue probablement d'origine thermique).

L'ensemble des observations sur coupes montre que le phénomène d'endommagement à l'orgine de l'amincissement du tronçon de tuyauterie est mécanisme de corrosion généralisée interne à la tuyauterie et se développant de manière assez homogène dans la microstructure du matériau, sans attaque préférentielle aux joints de grains de l'acier.

Les microstructures observées en métal de base du tube, du té, de la réduction et de la semelle sur les différentes coupes, sont granulaires avec de fins carbures réparties en amas, aux joints de grains et dans les grains, voir FIGURES 2 à 4, 7, 27 à 30, 33 à 36, 38 à 41, 47 à 49 et 61 à 63 en annexe E. Ces structures sont en accord avec celles observées typiquement dans les aciers à 5% de chrome. Les microstructures observées en métal de base du weldolet et du tube 3/4" sont plus aciculaires avec de fins carbures, voir FIGURES 15, 16 et 22 en annexe E.

Les microstructures des zones fondues des différentes soudures sont brutes de solidification et plus ou moins aiguillées, voir FIGURES 6, 8, 10, 11, 14, 17, 19, 20, 37, 43 à 46, 50 à 53, 55, 57 à 60 et 65 en annexe E.

Les microstructures des zones affectées thermiquement sont de type bainitique, avec localement la présence possible de plaqes martensitiques, voir FIGURES 8, 9, 11, 12, 17 à 19, 21, 42, 43, 54 à 56, 64 et 65 en annexe E.

Les microstructures observées sur les différentes coupes ne montrent pas de signe d'évolution ou de dégradation du matériau en service, ni même d'indice de transformation métallurgique notable liée à l'exposition en température lors de l'incendie.

6.7. Mesures de dureté sur coupes

Les niveaux de dureté relevés en métal de base du tube 8" sur les différentes coupes varient globalement de 140 à 147 HV10 avec des valeurs maximales dans la partie située sous la semelle (coupe C7), voir PAGE 3 en annexe F.

Sur les coupes C3 et C4 réalisées sur les bords de la déchirure, l'amincissement maximal du tube 8" n'a pas permis d'y effectuer des mesures HV10. Sur la coupe C3, le niveau de dureté HV0,5 est comparable à celui de la coupe C1 (et proche de la moyenne HV10). Sur la coupe C4 en zone de propagation de la déchirure, la dureté augmente au fur et à mesure que l'on s'approche du bord rompu avec une valeur maximale de 186 HV0,5, voir PAGE 4 en annexe F.

Les niveaux de dureté des zones fondues varient de 197 à 234 HV10. Les niveaux de dureté les plus élevés relevés sur l'ensemble des coupes, ont été mesurés en zones affectées thermiquement de la soudure weldolet/tube 3/4" (289 HV10 côté weldolet et 246 HV10 côté tube 3/4").

6.8. Analyses chimiques par SEO

Les compositions chimiques du métal de base de tube 8" et du métal fondu en passe externe de la soudure tube 8"/té, sont indiquées PAGES 2 et 4 en annexe G et reprises dans le tableau suivant où elles sont comparées avec celles indiquées dans les normes des produits ou les certificats matière qui nous ont été transmis (certificats matière du dossier constructeur):

		Composition chimique (pourcentages en masse)												
	С	Mn	Si	Cr	Ni	Mo	S	Р	Cu	Τī	Al	Nb	V	N
MB Tube 8"	0,12	0,46	0,32	4,19	0,11	0,55	0,004	0,010	0,14	<0,03	0,020	<0,03	<0,03	0,011
P5*	0,15 max	0,30 à 0,60	0,50 max	4,00 à 6,00	-	0,45 à 0,65	0,025 max	0,025 max	-		-	-	-	-
MF soudure té / tube 8"	0,09	0,66	0,29	5,09	0,26	0,57	0,009	0,013	0,05	<0,03	0,006	0,004	<0,03	0,011
BOEHLER FOX CM 5 Kb**	0,10	0,86	0,28	4,92	0,06	0,59	0,016	0,013	0,05	•	-	0,01	1	•
BOEHLER FOX CM 5 Kb***	0,10	0,89	0,24	5,0	<0,1	0,55	0,008	0,011	<0,1	-	-	<0,01	1	-

Tableau 3 : composition chimique du tube 8" rompu et du métal fondu de la soudure tube/té (en dernière passe)

La composition chimique du tube 8" provenant de la ligne désignée PJR-L-VPS018BC015, est compatible avec le grade P5 annoncé.

La composition chimique en passe externe de la soudure tube 8"/té apparait compatible avec le métal d'apport de nuance BOEHLER FOX CM 5 Kb mentionné dans les documents qui nous ont été transmis et avec la composition chimique des métaux de base (la dilution étant faible en dernières passe du cordon).

6.9. Microanalyses EDS en zone fondue de la soudure té / tube 8"

Les microanalyses réalisées sur la coupe C5 en zone fondue de la soudure tube 8"/té mettent en évidence une différence de composition entre la passe de racine et les passes de remplissage au niveau des teneurs en manganèse et silicium, voir PAGE 1 en annexe H. Ces différences correspondent bien aux teneurs figurant dans les certificats des deux types de produits d'apport cités dans le dossier de fabrication (fil d'apport TIG et Electrode Enrobée). Les teneurs elles-mêmes sont bien en accord avec les certificats matière et on voit que la passe interne analysée sur la coupe C5 correspond bien à la 1ère passe sensée être soudée avec le fil TIG ; voir le tableau comparatif ci-dessous :

^{*}selon le tableau 1 du standard ASTM A335/A335M-10 "Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service" d'avril 2010.

^{**}selon le certificat matière n°15-2004-03-753640 du 03/11/2004 concernant l'électrode enrobée de diamètre 2,5 mm (selon EN 1599 : E CrMo5 B 42 H5) coulée n° 1112531.

^{***}selon le certificat matière n°2012-2015079742-900002-0003 du 18/09/2012 concernant l'électrode enrobée de diamètre 3,2 mm (selon EN ISO 3580-A - E CrMo5 B 4 2 H5, selon AWS A5.5 E8018-B6H4R) coulée n° 1126772.

Zone analysée	Type de données	% Cr	% Mn	% Mo	% Si
Passe de racine	Certificat matière du fil d'apport TIG *	5,7	0,49	0,63	0,39
de la soudure	Analyse EDS sur coupe C5	5,55	0,57	0,46	0,41
Daurièus massa da	Certificat matière de l'électrode enrobée **/***	4,2/5,0	0,86/0,89	0,59/0,55	0,28/0,24
Dernière passe de remplissage	Analyse EDS sur coupe C5	5,36	0,83	0,61	0,30
	Analyse chimique par SEO	5,09	0,66	0,57	0,29

Tableau 4 : analyse EDS sur coupe du métal fondu de la soudure té/tube 8"

<u>Nota 4</u> : La dernière ligne du tableau ci-avant montre que les teneurs en éléments d'alliages obtenues par microanalyses EDS sont voisines des pourcentages obtenus par analyse chimique.

Ces résultats d'analyses EDS permettent de comprendre pourquoi les cordons de soudure ont mieux résisté au mécanisme d'endommagement de type sulfuration identifié à l'issue des investigations. Cette meilleure résistance à la sulfuration s'explique sans doute par la teneur un peu plus élevée en chrome du métal fondu des passes TIG de racine (5,5% Cr) par rapport au métal de base du tube 8" (4,2% de chrome).

6.10. Essais mécaniques en métal de base du tube 8"

Les résultats des essais mécaniques réalisés à température ambiante en métal de base du tube 8" (dans la partie relativement préservée située en génératrice basse sous la semelle du support) sont indiqués PAGES 3 et 4 en annexe I et comparés dans le tableau ci-après aux valeurs requises par la norme :

	Caractéris	Essai de flexion par choc sur éprouvette réduite 2,5 x 8mm		
	R _m (MPa)	R _{p0,2%} (MPa)	A%	Energie de rupture (en J)
Tube 8"	484	262	28,6	36,1 - 35,3 - 34,8
P5*	415 min	205 min	20 min	**

^{*}selon les tableaux 3, 4 et 5 du standard ASTM A335/A335M-10 "Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service" d'avril 2010.

Les caractéristiques mécaniques déterminées lors de l'essai de traction en métal de base du tube 8" satisfont aux exigences du standard ASTM A335/A335M-10 pour la nuance P5 annoncée.

^{*}selon le certificat matière n°20212-2015079124-900001-013 du 22/08/20212 concernant le métal d'apport baguette ou fil TIG BOELHER CM 5-IG de diamètre 2,4 mm (selon EN ISO 21952-A : W CrMo5SI, selon AWS A5.26 : ER80S-B6).

^{**}selon le certificat matière n°15-2004-03**-753640 du 03/11/2004 concernant l'électrode enrobée de diamètre 2,5 mm (selon** EN 1599 : E CrMo5 B 42 H5) coulée n° 1112531.

^{***}selon le certificat matière n°2012-2015079742-900002-0003 du 18/09/2012 concernant l'électrode enrobée de diamètre 3,2 mm (selon EN ISO 3580-A - E CrMo5 B 4 2 H5, selon AWS A5.5 E8018-B6H4R) coulée n° 1126772.

^{**}Le standard ASTM A335/A335M-10 "Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service" d'avril 2010 ne prévoit pas la réalisation d'essai de flexion par choc.

En ce qui concerne l'essai de résilience réalisé à 21°C, les valeurs d'énergie de rupture d'environ 35 J obtenues sur des éprouvettes d'épaisseur 2,5 mm (épaisseur maximale possible en raison de l'amincissement des parois du tube), ne mettent pas en évidence une quelconque fragilité du matériau.

6.11. Examen fractographique de la déchirure

Les bords de la déchirure survenue en partie courante du tube 8" sont en grande partie déformés et apparaissent plutôt brillants et exempts d'oxydes ou de dépôt, voir FIGURES 1 à 8 en annexe J. Leur examen à fort grossissement au microscope électronique à balayage met en évidence des zones matées (voir FIGURES 9 à 11 en annexe J) mais aussi des zones de rupture ductiles à cupules en partie déformées (voir FIGURES 12 à 14 en annexe J). Ces observations sont en accord avec les profils de rupture observés sur les coupes métallographiques C3 et C4.

6.12. Microanalyses EDS du dépôt et de la couche interne de produits de corrosion

Le dépôt noirâtre recueilli sur site par Exxon à l'intérieur du tronçon de la ligne 8" avant nettoyage HP, a été décanté, filtré et séché sur plaque chauffante à 50°C, voir FIGURES 1 à 10 en annexe K. Les microanalyses EDS réalisées sur ce dépôt, montrent que celui-ci est constitué en majorité des éléments fer (45% en masse en moyenne), carbone (30% en masse) et soufre (21% en masse) avec très peu d'oxygène, voir PAGE 6 en annexe K. Ces analyses indiquent que ce dépôt correspond donc sans doute en majeure partie à des produits de corrosion de la conduite (présence de fer), peut-être sous forme de sulfures.

Les microanalyses EDS (cartographie et filiation) réalisées sur la couche grise-brunâtre présente en surface interne de la coupe métallographique C1 prélevée à proximité du piquage inférieur 3/4", montrent des proportions importantes de fer (30 à 49%) et soufre (16 à 27%), et également en chrome (jusqu'à 19% en masse), voir PAGES 7 à 9 en annexe K. Ces résultats sont globalement similaires à ceux de l'analyse EDS des dépôts internes noirâtres prélevées précédemment sur site. La composition élémentaire et la constitution de la couche de dépôts internes au tube 8" apparaît caractéristique d'un mécanisme de corrosion à chaud de l'acier par les composés soufrés du fluide (phénomène de sulfuration à chaud).

Remarque : dans la mesure où la couche de produits de corrosion contient du soufre dont la masse atomique est plus faible que le fer, cet apport en soufre fait baisser la masse atomique moyenne du dépôt, et la concentration massique en chrome du dépôt est proportionnellement plus élevée dans le dépôt que dans le métal de base du tube 8".

6.13. Analyse par DRX du dépôt interne

L'analyse DRX du dépôt noirâtre recueilli sur site par EXXONMOBIL à l'intérieur du tronçon de la ligne 8" avant nettoyage HP, montre qu'il est constitué essentiellement de pyrrhotite 5C (de formule Fe_{9,021}S₁₀) ainsi que de traces de phase amorphe non déterminée, voir PAGE 2 du rapport joint en annexe L.

La pyrrhotite est un produit de corrosion possible dans le cas de la sulfuration à chaud, il est identifié et cité dans la littérature [8].

7. SYNTHESE DES RESULTATS

Le tube 8" de la ligne PJR-L-VPS018BC015 n'a pas subi de déformation plastique d'ensemble (gonflement) mais une déchirure ductile résultant d'un amincissement interne généralisé par corrosion survenu en service jusqu'à ce que l'épaisseur résiduelle de la paroi se rompt sous l'effet de la pression du fluide véhiculé. Des épaisseurs résiduelles minimales de l'ordre de 0,5 mm seulement ont été mesurées sur les bords de la déchirure et des épaisseurs d'environ 4 à 5 mm ont été relevées en génératrice basse dans la partie du tube située contre la sellerenfort ou semelle du tube support ainsi qu'au niveau des soudures de raboutage S35 (réduction/tube) et S32 (tube/té). Au regard de l'épaisseur initiale du tube de 10,31 mm, il s'agit là d'un amincissement progressif affectant toute la surface interne de ce tube de longueur 625 mm situé entre une réduction attenante à une bride et un té (té ne faisant pas partie du tronçon de ligne qui nous a été remis). La réduction excentrique présente des épaisseurs variables globalement comprises entre 3 et 17,5 mm mais sa morphologie particulière et son mode d'élaboration (avec des diamètres internes d'environ 100 mm côté bride et 200 mm côté tube 8") ont probablement occasionné de fortes variations d'épaisseur d'origine et il apparait difficile de se prononcer sur l'amincissent qui serait effectivement survenu en service.

L'amincissement généralisé de la paroi du tube 8" par l'intérieur, la présence de dépôts internes riches en soufre (le dépôt qui nous été transmis après avoir été recueilli sur site et la couche marron-grisâtre observée en peau interne sur coupes métallographiques), apparaissent caractéristiques d'un endommagement par corrosion à chaud de type sulfuration (désignée aussi « sulfidation » ou « sulfidic corrosion ») provoqué par le fluide véhiculé contenant des produits soufrés. La rencontre dans le tronçon de tube endommagé de deux flux (celui provenant du côté bride et celui provenant du côté opposé) a aussi probablement favorisé le développement et accru l'ampleur de ce mécanisme d'endommagement.

Les microanalyses réalisées sur coupe métallographique en zone fondue de la soudure tube 8"/té et l'analyse réalisée en dernière passe de remplissage montrent que la composition du métal fondu de la soudure apparaît conforme à l'attendu.

La composition chimique du tube 8" et les caractéristiques mécaniques déterminées lors de l'essai de traction en métal de base du tube 8", satisfont aux exigences du standard ASTM A335/A335M-10 pour la nuance P5 annoncée. Les valeurs d'énergie de rupture d'environ 35 J obtenues lors d'un essai résilience sur des éprouvettes d'épaisseur 2,5 mm (épaisseur maximale possible en raison de l'amincissement des parois du tube), ne mettent pas en évidence une quelconque fragilité du matériau.

intégralité sans modification ni altération d'aucune sorte.

8. CONCLUSION

En conclusion, la rupture du tube en acier à 5% Cr de la ligne 8" PJR-L-VPS018BC015 résulte d'un amincissement de paroi progressif en service due à un phénomène de corrosion interne de type sulfuration à chaud par réaction des composés soufrés du fluide process avec le métal du tube.

Ce phénomène de dégradation qui s'est développé en service, et la rupture du tube 8" qui s'est produite apparaissent comme la cause de la fuite d'hydrocarbures ayant conduit à l'incendie.

Le tube 8" a subi des pertes d'épaisseur très importantes, les épaisseurs résiduelles de paroi devaient être de l'ordre de 0,5 mm avant rupture pour une épaisseur nominale d'origine de 10,31 mm. Il s'agit donc d'une perte d'épaisseur de l'ordre de 9,8 mm sur une période de l'ordre de 12 ans de service entre février 2012 (date d'épreuve) et mars 2024, soit une vitesse de corrosion moyenne de l'ordre de 0,81 mm/an (si l'on considère une vitesse de corrosion constante).

Concernant le matériau mis en œuvre au niveau du tube 8" rompu, comme indiqué précédemment, les examens n'ont mis en évidence aucune anomalie, le tube est bien un acier allié à 5% de chrome répondant aux exigences normatives en termes de composition et de propriétés en traction. De même, les analyses conduites sur la soudure de raccordement tube 8"/té montrent une composition du métal fondu conforme à l'attendu, la teneur plus élevée en chrome en passe de racine (5,5%Cr) expliquant probablement la meilleure tenue des cordons de soudures par rapport au métal de base (4,2%Cr).

La corrosion à chaud de type sulfuration est un mode d'endommagement bien connu dans les installations de raffinage, il est cité de manière générale notamment dans le document API 571 « Damage Mechanisms Affecting Fixed Equipment in the Refining Industry » [6] et décrit plus spécifiquement dans le document API 939-C « Guidelines for avoiding sulfidation (sulfidic) corrosion failures in Oil refineries » [7].

Il existe deux formes de corrosion à chaud par les composés soufrés :

- La corrosion de type sulfuration en l'absence d'hydrogène (H₂) dans le fluide process, c'est le phénomène retenu dans notre cas de figure. Dans ce type d'endommagement, dont la cinétique peut être évaluée à titre indicatif par les courbes modifiées de McConomy, la teneur en chrome de l'acier notamment influe sur la résistance du matériau.
- La corrosion par H₂/H₂S en présence d'hydrogène, phénomène pour lequel le teneur en chrome de l'acier n'a pas d'impact important sur la tenue du matériau en deçà de 12% Cr. Les cinétiques ou vitesses de corrosion sont dans ce cas prédites par les courbes de « Couper-Gorman ».

La sulfuration à chaud en l'absence d'hydrogène dissous dans le fluide est un phénomène à considérer à partir d'une température de service de 260°C, la cinétique de cet endommagement reste encore à ce jour difficile à prédire car elle dépend de multiples facteurs, notamment :

- De la nature du matériau. Comme le montre les courbes de McConomy, la résistance des aciers augmente avec le teneur en chrome, car le chrome participe à l'élaboration des produits de corrosion qui forment des couches « protectrices » en surface du matériau (couches constituées de sulfure de fer et de chrome).
- De la température de service, la vitesse de corrosion augmente avec la température (comme décrit dans les courbes de McConomy).
- De la concentration totale en soufre dans le fluide et de la nature des composés organiques soufrés.
 Tous les composés n'ont pas la même activité corrosive sur l'acier (H2S, mercaptans, polysulfures, soufre élémentaire...) ce qui constitue un facteur d'incertitude important sur la prévision de la vitesse

de corrosion. Les courbes de McConomy qui ne considèrent que la concentration en soufre totale, sont reconnues à ce titre comme étant approximatives (et souvent comme conservatives prédisant des vitesses de corrosion théoriques plus sévères que les vitesses réelles [8]). Par ailleurs, les éventuelles variations de composition du fluide au cours de l'exploitation peuvent aussi faire varier la vitesse de corrosion, ce qui ajoute à la complexité du problème.

- De la présence d'acides organiques dans le fluide (acides naphténiques) qui ont tendance à dissoudre la couche de sulfure de fer et à accélérer la vitesse de corrosion.
- De la vitesse d'écoulement du fluide, dont dépendent les contraintes de cisaillement exercées sur les couches « protectrices » de produits de corrosion au contact du fluide. L'augmentation de la vitesse d'écoulement entrainera donc une vitesse de corrosion accrue et cet effet peut être actif à partir d'une vitesse de 1 m/s. A noter que les courbes de McConomy ne prennent pas en compte ce facteur vitesse d'écoulement.

Si l'on considère les courbes modifiées de McConomy seules, en prenant en hypothèse une concentration totale en soufre du fluide de 1,7% en masse (valeur donnée par ExxonMobil), et une température de fluide comprise entre 370°C et 393°C, la vitesse potentielle de corrosion par sulfuration serait comprise entre 0,18 mm/an et 0,63 mm/an environ sur un acier à 5% de chrome. Dans notre cas de figure, les possibles turbulences engendrées par la rencontre des deux fluides aux débits très différents (25 m³/h et 180 m³/h) venant du té et de la réduction ont pu contribuer à l'accélération de la vitesse de corrosion, de même que les acides organiques contenus dans le fluide.

Paris Nord 2, le 17 mai 2024

M. MONTALBETTI - A LE GUELLAUT

Les échantillons ayant donné lieu au présent rapport technique seront conservés à la disposition du demandeur pendant une durée de trois mois à compter de la date d'émission du rapport

PASSÉ CETTE DATE ILS SERONT DÉTRUITS

ANNEXEA

EXAMENVISUE LEXTERNE

FIGURE 1

VUE D ENSEMBLE COTE DECHIRURE

REPERAGE DES SOUDURES ET RELEVE DU DIAMETRE EXTERIEUR DU TUBE (EN mm)

FIGURE 2
VUE D ENSEMBLE COTE OPPOSE A LA DECHIRURE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	alt

FIGURE 3
VUE D ENSEMBLE COTE GENERATRICE HAUTE

FIGURE 4
VUE D ENSEMBLE COTE GENERATRICE BASSE
ET REPERAGE DES SOUDURES

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	ANTE

FIGURE 5
DETAIL 1 DE LA FIGURE 3 COTE GENERATRICE HAUTE

FIGURE 6
DETAIL 2 DE LA FIGURE 3 COTE GENERATRICE HAUTE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	dit

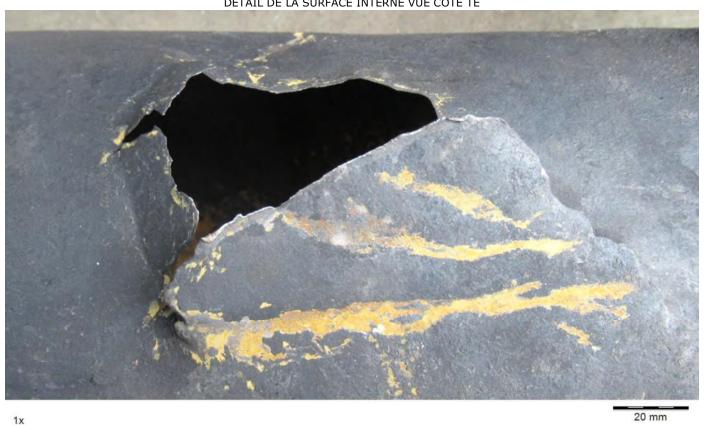
FIGURE 7
VUE COTE GENERATRICE HAUTE

FIGURE 8
AUTRE VUE COTE GENERATRICE HAUTE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	dit

FIGURE 9
VUE D ENSEMBLE COTE BRIDE

FIGURE 10
VUE INTERNE COTE SOUDURE TUBE / TE ET RELEVE DE L'EPAISSEUR DU TUBE (EN mm)


	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	alt

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 EN L'ETAT DE RECEPTION

FIGURE 11DETAIL DE LA SURFACE INTERNE VUE COTE TE

FIGURE 12

DETAIL 1 DE LA FIGURE 1

VUE D ENSEMBLE DE LA DECHIRURE ET RELEVE DE L'EPAISSEUR DES BORDS ROMPUS (EN mm)

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	dit

FIGURE 13 DETAIL DE LA FIGURE 1 VUE EXTERNE DU PIQUAGE 3/4"

FIGURE 14
DETAIL DE LA FIGURE 10
VUE INTERNE DU PIQUAGE 3/4"

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	dit

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 RELEVE DES MARQUAGES DE LA BRIDE

FIGURE 15
VUE D ENSEMBLE DES MARQUAGES

FIGURE 16 DETAIL 1 DE LA FIGURE 15

FIGURE 17 DETAIL 2 DE LA FIGURE 15

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	alt

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 RELEVE DES MARQUAGES DE LA REDUCTION ET DU TUBE

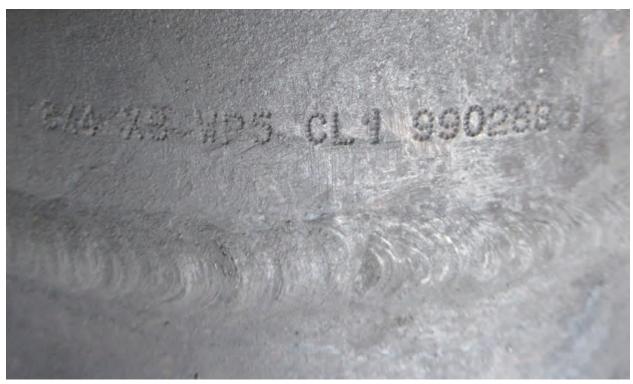


FIGURE 18
MARQUAGE DE LA REDUCTION

FIGURE 19 MARQUAGE DU TUBE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	alt

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015

FIGURE 20 VUE D ENSEMBLE APRES NETTOYAGE DE LA SURFACE EXTERNE

FIGURE 22
DETAIL 2 DE LA FIGURE 20
AU NIVEAU DE LA DECHIRURE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	alt

0.5x

20 mm

ANNEXE B

CARTOGRAPHIES D'EPAISSEUR PAR METHODES ULTRASONORES

Affaire suivie par: VLP - E3C ZI PARIS NORD 2 93420 VILLEPINTE TelCentre

EXXONMOBIL CHEMICAL FRANCE

NOTRE DAME DE GRAVENCHON 76330 NOTRE DAME DE GRAVENCHON

A l'attention de : Olivier VACHER

RAPPORT TECHNIQUE

Cartographie d'épaisseur tronçon de tuyauterie endommagé 8"

AFFAIRE

Intitulé: Expertise ligne 8" et 10"

Client: EXXONMOBIL CHEMICAL FRANCE Commande N°: /

Offre N°: OFF-24-ISI25392

Lieu d'intervention : Laboratoire ISE Villepinte

Date d'intervention: 02 et 03-04-2024

Personne rencontrée :

RESUME

Les mesures d'épaisseurs par ultrasons ont été effectuées sur le tronçon endommagé de la ligne PJR-L-VPS018BC015. Les zones cartographiées sont repérées suivant le marquage identifié sur la pièce (voir plan de repérage Figure 1).

Les contrôles par ultrasons ont mis en évidence les éléments suivants :

- Corrosion généralisée très importante au niveau du tube (épaisseur minimale relevée hors zone de rupture de 0,5 mm). Il est à noter que la corrosion est moins importante à proximité des soudures S32 et S35)
- Forte variation d'épaisseur au niveau de la réduction concentrique (épaisseur comprise entre 2,6 mm et 18.3 mm)
- Absence d'incitation notable dans l'épaisseur résiduelle des différents éléments.

Les résultats d'épaisseurs sont détaillés dans les cartographies présentées au §4. Des conclusions détaillées sont présentées au §5

	Nom	N° carte	Date	Visa
Rédigé par	TESSIER Manuel	BO3-015223	04/04/2024	

SOMMAIRE

1.	Contexte	. 3
	Examen Réalisé	
3.	Conditions Opératoires	
3.1.	Matériel et réglages	
3.2.	Repères des zones contrôlées	. 4
4.	Résultat de contrôle	. 4
4.1.	Contrôle non encodé sur génératrices	. 4
4.2.	Contrôle encodé sur génératrices	. 5
4.2	.1. Cartographie type C-Scan	. 5
4.2	.2. Cartographie type B-Scan	. 6
5	Conclusion	15

1. Contexte

L'Institut de Soudure a été sollicité dans le cadre d'une expertise sur un tronçon de tuyauterie de diamètre 8". Ce tronçon est constitué d'une réduction et d'un tube présentant une platine de renfort tube/support et un weldolet. Le tube présente une zone de rupture localisée entre 45° et 90°.

Ce rapport présente les résultats des contrôles par ultrasons (UT conventionnels manuels et encodés) réalisés sur le tronçon afin constituer une cartographie d'épaisseur et de vérifier l'état de santé matière des éléments constitutifs du tronçon.

2. Examen Réalisé

Les contrôles suivants ont été réalisés sur le tronçon à expertiser :

- 1- Acquisitions non encodées, selon 8 génératrices (à 45°) du tube et de la réduction excentrique
- 2- Acquisitions encodées, avec un pas 0.5mm selon la longueur du tronçon, sur des génératrices du tube avec 25mm d'espacement (13°) et à 45° sur la réduction excentrique, ce contrôle a pour objectif de réaliser une cartographie d'épaisseur sur le tube, et de visualiser le profil d'épaisseur résiduelle

Nota: En raison de l'état de surface dégradé et de la configuration géométrique de la pièce (faible épaisseur, faible diamètre, présence d'obstacles), une cartographie par ultrasons multiéléments n'a pu être mise en œuvre. Afin d'assurer une meilleure fiabilité des mesures, un traducteur bi-élément de fréquence 10 MHz a été privilégié.

Les examens ont été réalisés par Mr Ali Chouikha, agent certifié UT2/3 (BO2/3-013404) selon NF EN ISO 9712.

3. Conditions Opératoires

3.1. Matériel et réglages

Appareillag	е		
Marque	Туре	N° de série	Fin d'étalonnage
Olympus	X3 32128PR	QC-0035986	12/2024

Couplage		
Туре	Marque	Date de péremption
Gel thixotropique	Sofranel UAC-2D	12/2024

Trac	ducteurs						
N°	Marque	Туре	N° série	Ondes	Fréquence (Mhz)	Pt d'émergence (mm)	Dimension de piézo-élements (mm)
1	GE	SEB10KF3	56867-2777	OL	10	NA	5x2 Ø

Vitesse considérée (vérifiée sur le métal de base) : 5890m/s

Les contrôles encodés sont réalisés à l'aide d'un codeur filaire de marque Ekoscan présentant une résolution de 23,3 imp/mm.

L'étalonnage de la chaine de mesure (retard sabot) est réalisé à l'aide d'une cale d'épaisseur 9,1 mm.

Repères des zones contrôlées 3.2.

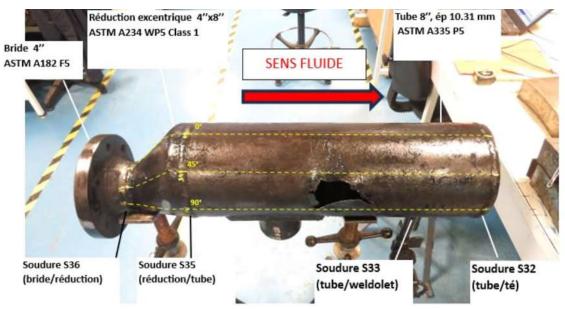


Figure 1: Repères considérés pour l'encodage et le positionnement des points de mesures

4. Résultat de contrôle

4.1. Contrôle non encodé sur génératrices

Le Tableau 1 présente les mesures d'épaisseur réalisées sans encodage sur le tube entre les soudures S35 et S32.

		S35			Di	stanc	e à l'o	rigine	(mm) en p	artant	du pi	ed de	cordo	n ext	erne (selon	sens	du flui	de de	s sou	dures	S35 à	S32)			S32
		0	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625
	0	4,8	3,7	2,8	2,6	2,2	1,9	1,5	1,7	1,7	1,9	1,5	1,2	2,2	1,5	1,5	1,5	1,5	1,5	1,5	1,8	2,6	2,7	3,7	4,1	5,6	6,5
	45	4,4	3,4	2,3	2,0	1,8	1,1	1,3	1,7	1,3	1,4	1,4	2,0	1,3	1,3	1,0	1,1	1,6	1,3	1,3	1,5	1,9	1,6	2,0	3,0	3,7	5,0
(°)	90	3,5	2,6	1,6	1,6	2,0	1,5	1,1	1,7	1,4	1,5	2,1	2,0	1,6	1,3	1,6	1,9	1,7	1,3	1,1	1,4	1,3	1,6	1,6	2,1	2,1	2,4
trice	135	3,9	3,2	3,2	S	S	S	S	S	S	S	S	S	2,9	2,8	2,1	1,5	1,5	1,2	1,5	1,3	1,5	1,4	1,6	1,8	1,8	1,5
nératric	180	3,6	3,3	3,9	S	S	S	S	S	S	S	S	S	3,1	2,6	2,3	1,7	1,6	1,8	2,2	2,0	W	W	W	2,4	2,0	1,6
Gé	225	4,7	4,3	4,3	S	S	S	S	S	S	S	S	S	2,7	2,3	1,9	1,7	1,6	2,1	2,3	2,3	2,3	2,4	2,3	2,3	2,4	2,4
	270	4,9	4,6	3,8	2,9	2,9	2,7	2,9	2,5	2,1	2,1	2,4	2,5	2,2	1,5	2,2	1,9	2,2	2,2	2,6	2,1	2,4	3,1	3,1	3,5	3,7	3,7
	315	5,2	3,7	2,9	2,4	2,3	2,1	2,3	1,9	1,5	1,8	1,8	1,3	1,7	1,3	1,4	1,9	2,2	1,6	1,7	1,9	2,0	3,4	3,3	3,9	4,1	5,4

S : platine renfort du tube-support en partie basse

Tableau 1: épaisseurs résiduelles de paroi du tube (en mm)

W: weldolet du piquage 34" en génératrice basse

Valeurs surlignées en orange : valeurs mesurées de part et d'autre de la zone de rupture du tube

Le Tableau 2 présente les mesures d'épaisseur réalisées sans encodage sur la réduction excentrique entre les soudures S33 et S35.

		Soudure S36		• .	, .	ant du pied e s soudures S		Soudure	\$35		
		0	25	50	75	100	125	140	150	170	175
	0	nm	17,5	17,4	16,3	14,5	12,0		11,6		8,7
	45	nm	17,3	17,0	15,6	14,1	11,5		10,1	7,8	
(°)	90	9,5	14,0	13,0	12,8	10,1	9,4		7,8		
Génératrice	135	5,3	7,6	9,7	9,8	8,0	7,2	6,8			
néra	180	3,8	3,5	3,2	8,2	8,6	8,1	7,0			
Gél	225	7,6	8,7	10,2	10,2	9,5	8,3		8,0		•
	270	10,4	14,9	14,2	13,1	11,6	10,7		8,5		
	315	nm	17,3	16,9	1 5,7	13,7	11,4		10,5	8,3	

nm : non mesurable en raison de la géométrie interne de la pièce

note : La réduction excentrique présentant des génératrices de longueurs variables, le dernier point de mesure au niveau du pied de cordon de la soudure S35 se situe selon les cas à 140 mm (pour les génératrices les plus courtes en partie basse de la réduction) ou 175 mm (pour la ligne de mesure située en position haute) du point zéro.

Tableau 2: épaisseurs résiduelles de paroi de la réduction excentrique (en mm)

4.2. Contrôle encodé sur génératrices

4.2.1. Cartographie type C-Scan

La Figure 2 présente la cartographie d'épaisseur obtenue sur le tube. Elle est reconstituée à partir de l'ensembles de génératrices réalisées sur la circonférence du tube.

Elle met en évidence la présence d'une corrosion généralisée sur l'ensemble du tube avec une épaisseur résiduelle moyenne estimée à environ 2 mm (pour une épaisseur théorique nominale de 10,31 mm). Il est cependant à noter que le phénomène de corrosion est moins important à proximité des soudures S32 et S35 (épaisseur à proximité de cordon comprise entre 3 et 5 mm).

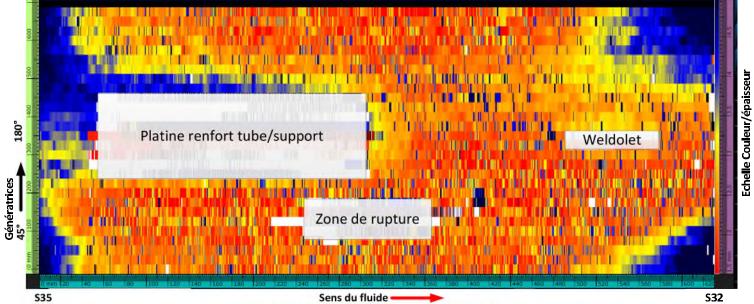


Figure 2: Cartographie d'épaisseur du tube

Nota: Compte tenu de l'état de surface dégradé, de la forte variation d'épaisseur et de l'allure du signal ultrasonore, certains points présentant des épaisseurs <2 mm peuvent ne pas apparaître sur la cartographie. Les épaisseurs résiduelles minimales à retenir sont celles présentées dans le suite du rapport (mesuré sur chacune des génératrices).

4.2.2. Cartographie type B-Scan

Les Tableau 3 présentent les profils d'épaisseur obtenus sur chacune des génératrices du tube et de la réduction. Le principe de cette vue est présentée sur la Figure 3 . Pour chacun des profils, l'épaisseur résiduelle est identifiée et une mesure manuelle est réalisée afin d'améliorer la précision. Dans la mesure du possible, cette mesure est réalisée selon le mode 3 de la norme NF EN ISO 16809 (mesure en double écho - indiquée par * lors que possible - voir Figure 4).

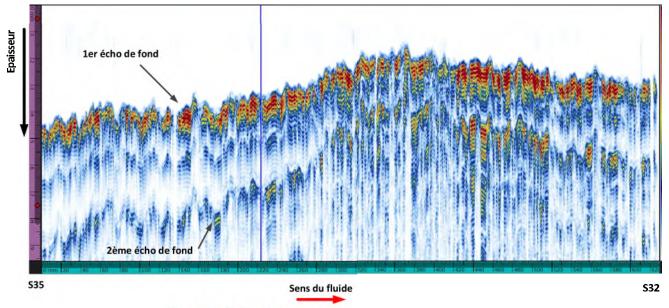


Figure 3: Description des profils d'épaisseur (vue B-Scan)

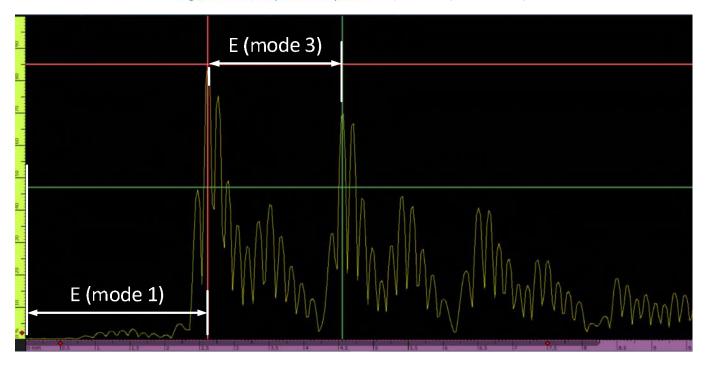
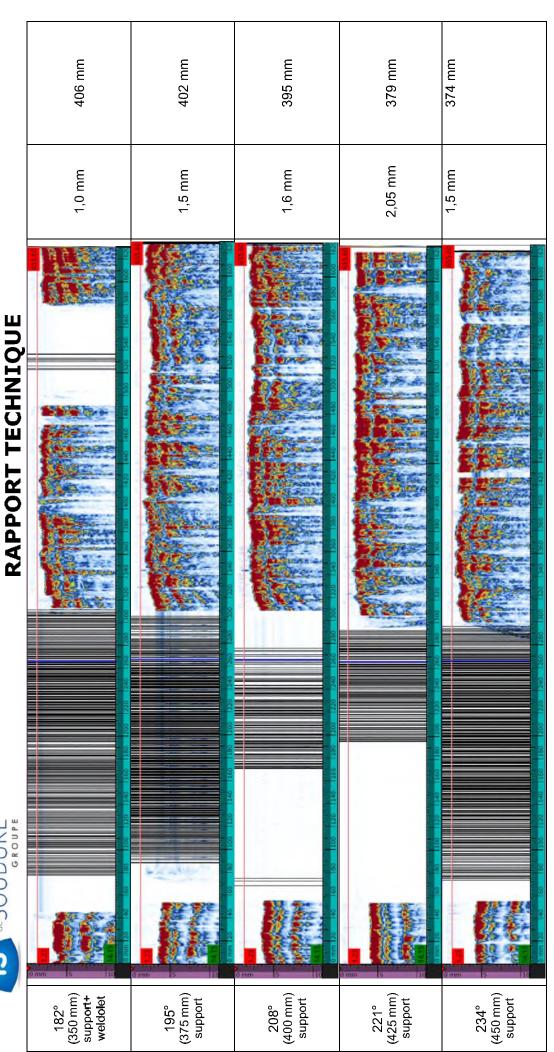


Figure 4: Principe de mesure d'épaisseur sur signal A-Scan

Nota: Lors d'une mesure en mode 3, une attention particulière est apportée sur l'alternance considérée pour la mesure sur chacun des échos. En cas de mesure en simple écho (mode 1) une correction du retard est apporté.

Position de l'épaisseur minimale (selon axe tube / bord S35)	432 mm	398 mm	206 mm	454 mm
Epaisseur résiduelle minimale	0,8 mm	0,7 mm	1,05 mm (*)	0,6 mm
profil				
position génératrice	0° (0mm)	13° (25 mm)	26° (50 mm)	39° (75 mm)

156 mm 444 mm 148 mm 457 mm 465 mm 0,7 mm (*) 0,6 mm (*) 0,8 mm (*) 0,8 mm (*) 0,5 mm Zone de rupture Zone de rupture Zone de rupture 52° (100 mm) 65° (125 mm) 78° (150 mm) 91° (175 mm) 104° (200 mm)


Institut de Soudure Industrie SASU Bobigny RCS 414 728 964
Siège Social : 21 Paris Nord 2 - 90 rue des Vanesses - BP 51362 - 95942 Roissy Charles De Gaulle Cedex
(Fit + 33 (0)1 49 90 36 00 - Fax + 33 (0)1 49 90 36 50 - www.isgroupe.com

**Personalization (Seisblas des prestations de services varidues par Institut de Soudure Industrie, conformément à ses conditions générales de vente, est effectuée sous la propie responsabilité du dient. La reproduction partielle de ce rapport est strêctement intendite, il ne peut être reproduit que dans son intégralité sans modification in aixération decurne sorte.

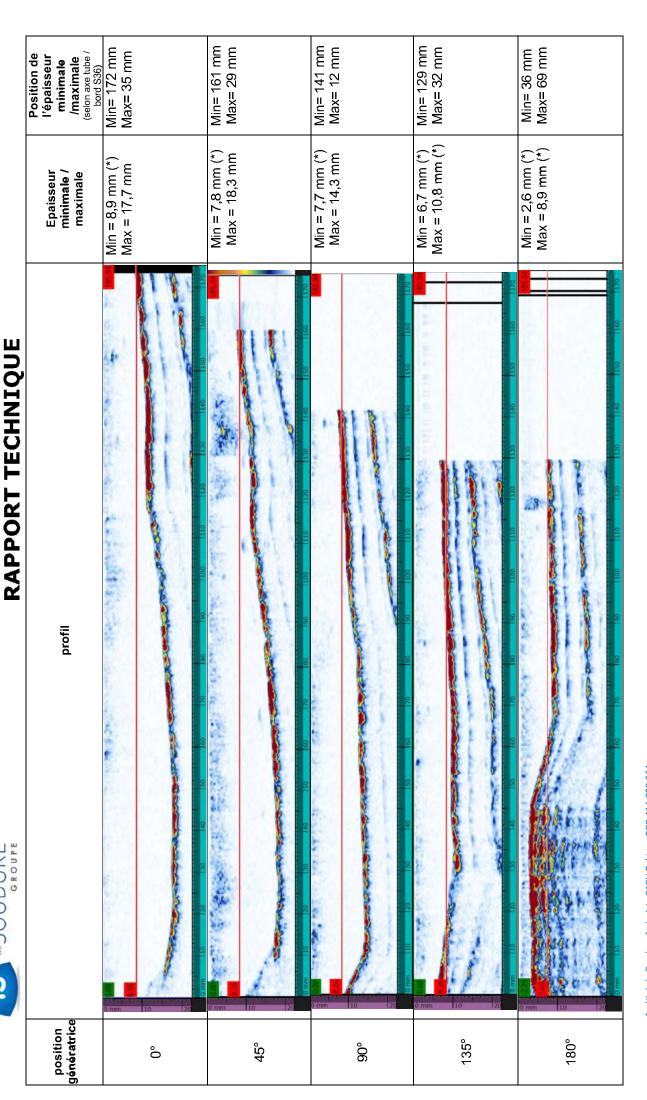
491 mm 431 mm 409 mm 378 mm 405 mm 0,8 mm (*) 0,9 mm (*) 0,9 mm (*) 0,9 mm (*) 0,9 mm (*) RAPPORT TECHNIQUE Weldolet Plaque support Plaque support 130° (250 mm) (275 mm) support 156° (300 mm) support (325 mm) support+ (225 mm) weldolet 117° 143° 169°

Institut de Soudure Industrie SASU Bobigny RCS 414 728 964
Siège Social : ZI Paris Nord 2 – 90 rue des Vanesses - BP 51362 – 95942 Roissy Charles De Gaulle Cedex
Fig. 13 (0)11 49 90 36 00 - Fax + 33 (0)1 49 90 36 50 - www.isgroupe.com
wortschools/suskages
Fullisation des réalitats des prestations de services vandres par Institut de Soudure Indistine, conformément à ses conditions générales de vente, est effectuée
sous la propre responsabilité du dient. La reproduction partielle de ce rapport est sindement intendite, il ne peut être reproduit que dans son intégralité sens modification na artécite de la reproduction partielle de ce rapport est sindement il ne peut être reproduit que dans son intégralité sens modification na artécite de la contraction partielle de ce rapport est sindement la peut être reproduit que dans son intégralité sens

371 mm 360 mm 319 mm 310 mm 315 mm 300 mm 0,9 mm (*) 1,2 mm (*) 1,4 mm(*) 1,5 mm 1,0 mm 1,1 mm 247° (475 mm) 273° (525 mm) 260° (500 mm) 286° (550 mm) 299° (575 mm) 312° (600 mm)

No en sessenciona.

No en sessencionamente des prestators de services vandues par Institut de Soudure Industrie, conformément à ses conditions générales de vente, est effectuée sous la propie responsabilité du dient. La reproduction partielle de ce rapport est structement interdite, il ne peut être reproduit que dans son intégraité sans modification ni altération d'aucune sorte. Institut de Soudure Industrie SASU Bobigny RCS 414 728 964
Siège Social : ZI Paris Nord 2 - 90 rue des Vanesses - BP 51362 - 95942 Roissy Charles De Gaulle Cedex
Tél. + 33 (0)1 49 90 36 00 - Fax + 33 (0)1 49 90 36 50 - www.isgroupe.com



325 mm 303 mm 310 mm 0,95 mm (*) 0,9 mm (*) 1,2 mm (*) RAPPORT TECHNIQUE 338° (650 mm) 325° (625 mm) 351° (675 mm)

Tableau 3: Profils d'épaisseur obtenus sur le tube

Institut de Soudure Industrie SASU Bobigny RCS 414 728 964
Siège Social : ZI Paris Nord 2 - 90 rue des Vanesses - BP 51362 - 95942 Roissy Charles De Gaulle Cedex
(Fi. + 33 (0)1 49 90 36 00 - Fax + 33 (0)1 49 90 36 50 - www.isgroupe.com

**POTISTICATION SEALIST ROPE SEASON SE

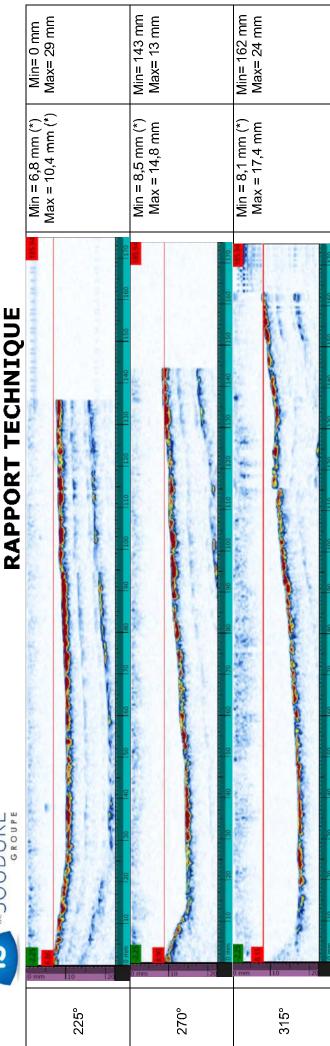


Tableau 4: Profils d'épaisseur obtenus sur la réduction

5. Conclusion

Les contrôles par ultrasons conventionnels (encodé et non encodé) ont permis de mettre en évidence les éléments suivants :

- Réalisation d'une cartographie d'épaisseur type C-Scan et relevé de profils typbe B-Scan,
- Mise en évidence de la présence d'un phénomène de corrosion généralisée sur l'ensemble du tube. L'épaisseur résiduelle minimale hors zone de rupture est mesurée à 0,5 mm (à proximité de la zone de rupture - 52°). Une épaisseur moyenne dans la zone de corrosion est évaluée à 2 mm.
- Sur le tube, les zones situées à proximité des deux soudures circulaire S35 et S36 sont moins affectées par le phénomène de corrosion (épaisseur résiduelle comprise entre 3 et 5 mm),
- Le profil de la corrosion sur le tube est dans l'ensemble assez homogène (avec une légère augmentation de l'épaisseur résiduelle à proximité des soudures),
- En considérant une épaisseur nominale de 10,31 mm, la perte maximale par corrosion est de 9,8 mm (hors zone de rupture).
- Aucune indication notable n'a été relevée dans l'épaisseur des pièces (tube et réduction),
- La réduction excentrique présente de forte variation d'épaisseur : épaisseur variant de 2,6 mm en génératrice inférieure (180°) à proximité de la soudure S36 à 18,3 mm en génératrice 45°. Sur chaque génératrice contrôle le profil est variable. Ces fortes variations résultent probablement du mode d'élaboration de la pièce. Il est probablement que le phénomène de corrosion soit aussi présent sur cette pièce. Cependant, en l'absence des valeurs nominales, la perte du au phénomène de corrosion ne peut être déterminée.

ANNEXE C

SCAN 3D

Affaire suivie par: VLP - E3C ZI PARIS NORD 2 93420 VILLEPINTE TelCentre

EXXONMOBIL CHEMICAL FRANCE

NOTRE DAME DE GRAVENCHON 76330 NOTRE

DAME DE GRAVENCHON

A l'attention de : Olivier VACHER

RAPPORT TECHNIQUE

Scans 3D sur tube 8" et réduction excentrique 4"x8" du tronçon endommagé de la ligne PJR-L-VPS018BC015

AFFAIRE

Intitulé: Expertise - Scan 3D

Client: EXXONMOBIL CHEMICAL FRANCE Commande N°: Bon pour accord du 11/04/24

Offre N°: OFF-24-ISI25997-V1

Lieu d'intervention : Institut de Soudure – YUTZ (57970)

Date d'intervention: 08/04/2023

Personne rencontrée : Michel MONTALBETTI (IS)

RESUME

Contrôle par scan 3D sur les échantillons « tube 8" » et « réduction 4"x8" ».

Caractérisation des épaisseurs résiduelles, écarts de géométries avec un tube interne de référence et mesures des volumes internes.

Fourniture au client des fichiers de données STL.

Détails du contrôle et des résultats pages suivantes.

	Nom	N° carte	Date	Visa
Rédigé par	FERRARI MORGAN	4386	15/04/2024	FER

Table des matières

1.	Obje	ct3
	1.1.	Objectifs
	1.2.	Eléments examinés
2.	Maté	riel utilisé4
:	2.1.	Contrôle Scan3d4
3.	Méth	odologie5
;	3.1.	Repérage et acquisition :5
4.	Acqu	isitions5
4	4.1.	Demi-tube non percé
	4.1.1.	Définition d'un cylindre externe ajusté de référence6
	4.1.2.	Définition du cylindre interne théorique
	4.1.3.	Ecart de géométrie entre la peau interne corrodée et le cylindre interne ajusté
	4.1.4.	Mesure de l'épaisseur résiduelle9
	4.1.5.	Mesure du volume interne
	4.2.	Demi-tube percé (avec zone de rupture)
	4.2.1.	Définition d'un cylindre externe ajusté de référence
	4.2.2.	Définition du cylindre interne théorique 14
	4.2.3.	Ecart de géométrie entre la peau interne corrodée et le cylindre interne ajusté 15
	4.2.4.	Mesure de l'épaisseur résiduelle 16
	4.2.5.	Mesure du volume interne
	4.3.	Demi-réduction 1
	4.3.1.	Mesure de l'épaisseur résiduelle20
	4.3.2.	Mesure du volume interne
4	4.4.	Demi-réduction 2
	4.4.1.	Mesure de l'épaisseur résiduelle25
	4.4.2.	Mesure du volume interne
5.	Co	onclusions27
ļ	5.1.	Tube
	5 2	Páduction

1. Objet

Institut de Soudure a réalisé une numérisation à l'aide d'un scanner3D portable à lumière blanche sur 100% de la surface accessible des échantillons « demi-tubes » et « demi-réductions » issus de la ligne endommagée PJR-L-VPS018BC015 de la raffinerie ExxonMobil de Port-Jérôme.

1.1.Objectifs

- -Mesures des épaisseurs résiduelles, entre la peau externe et interne.
- -Détermination d'un cylindre ajusté par rapport à la surface externe pour la création d'un cylindre interne théorique (épaisseur de 10.31mm). Mesures des écarts de géométrie entre la peau interne scannée et ce cylindre.
- -Déterminations des volumes internes.

1.2. Eléments examinés

- -Demi-tubes 8", partie percée et son opposé (matériau : acier ASTM A335 grade P5).
- -demi-réductions 4"x8" (matériau ASTM A234 WP5).

2. Matériel utilisé

2.1.Contrôle Scan3d

Scanner 3D portable

Go!SCAN SPARK

• N° de série : 9220518

• N° de plaque d'étalonnage : 9352198 -Etalonnage avant acquisition

• Configuration d'état de surface :

-Ouverture de l'obturateur automatique

• Acquisition par balayage manuel

-Résolution utilisée: 0.8mm

- Distance de contrôle : +/- 400mm

- Positionnement par :

... Pastille de référence / Géométrie / Texture o Lumière blanche

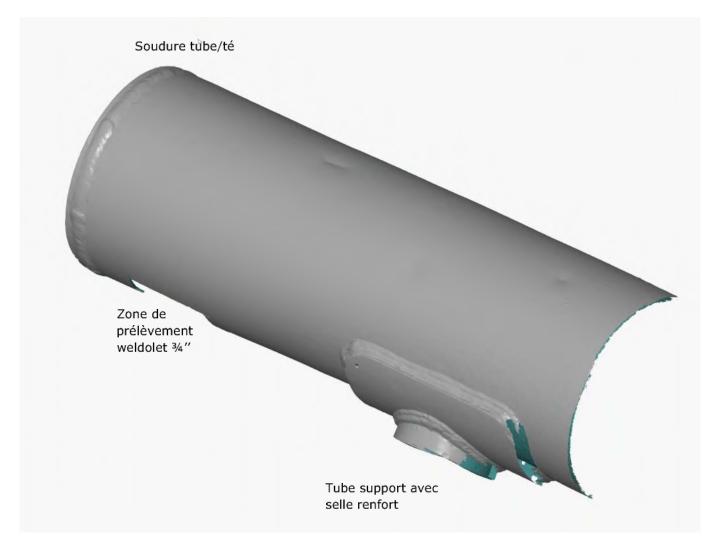
... 99 lignes de numérisation

... Acquisition maillage et texture

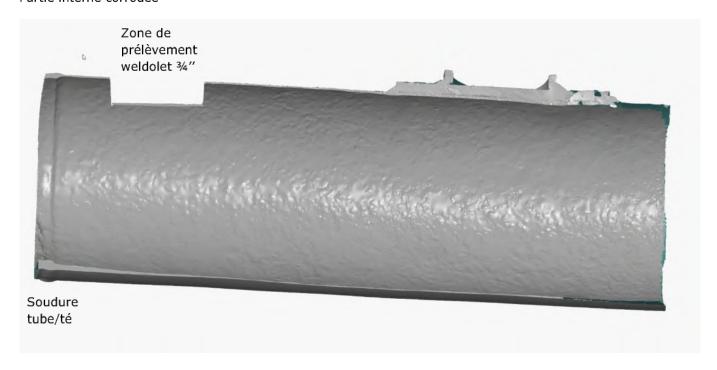
3. Méthodologie

3.1. Repérage et acquisition :

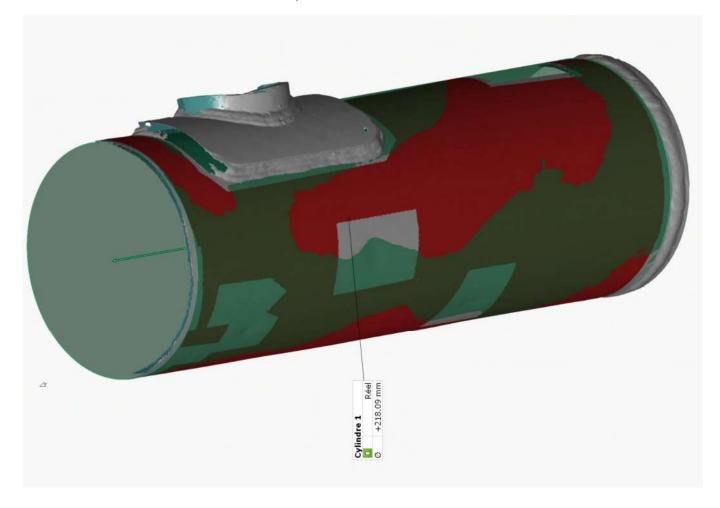
L'échantillon a été scanné à 100% (2 demi-tubes et 2 demi-réductions en une seule fois par balayage manuel à une distance d'environ 400mm avec une résolution de 0.8mm en s'appuyant sur les éléments suivants :


- Cibles de positionnement (sur la pièce et sur le plan de travail).
- Géométrie de la pièce.

Acquisition du maillage pour les analyses sous logiciel ZEISS INSPECT.

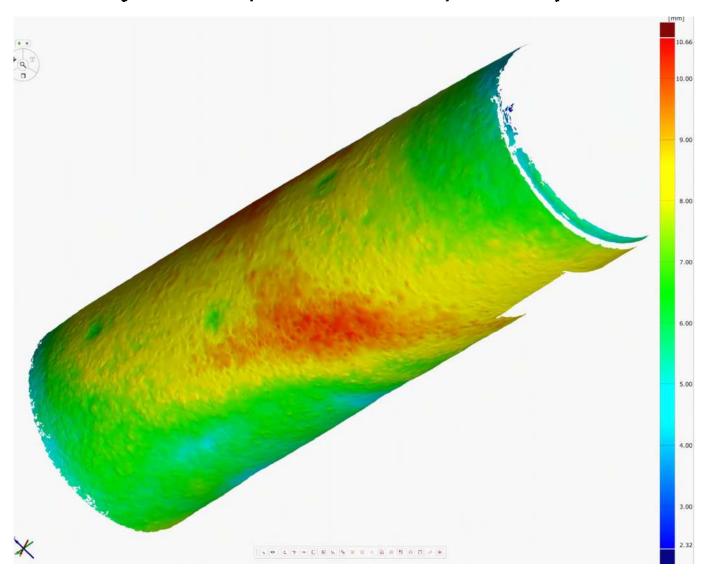

4. Acquisitions

4.1.Demi-tube non percé


Partie externe

Partie interne corrodée

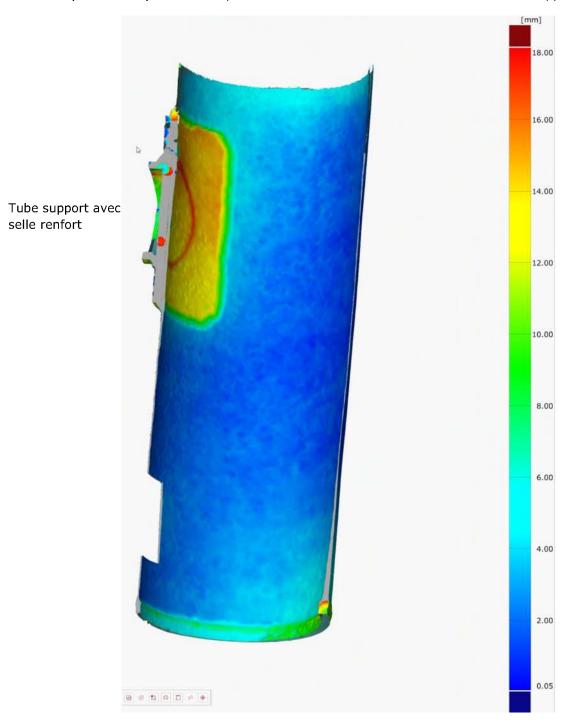
4.1.1. Définition d'un cylindre externe ajusté de référence


Pour se faire, il a été choisi les zones en rouge ci-dessus. Toutes les parties présentant une semelle, un piquage ou bien une déformation liée à la zone de rupture ont été évitées. Un diamètre externe a pu en être extrait avec pour valeur 218.09mm.

4.1.2. Définition du cylindre interne théorique

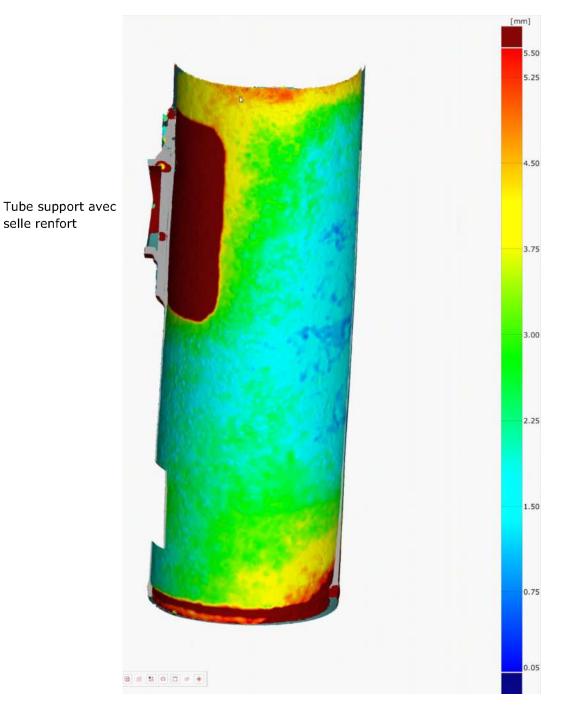
Nous sommes partis du cylindre externe avec une réduction du diamètre équivalente à l'épaisseur de paroi de 10.31mm d'origine. Celui-ci a pour diamètre ${\bf 197.47mm}$.

4.1.3. Ecart de géométrie entre la peau interne corrodée et le cylindre interne ajusté



Une échelle de couleur représentant la distance en mm entre le cylindre interne et la peau interne. L'échelle va de 2.32mm à 10.66mm.

4.1.4. Mesure de l'épaisseur résiduelle


Ceci correspond à l'épaisseur entre la peau externe et l'interne scanné en tous points. Deux échelles ont été utilisées pour mettre en évidence les mesures effectuées dans la zone du tube-support (avec semelle renfort) et du tube 8" en lui-même. Attention, les valeurs indiquées sur la représentation graphique au niveau du tubesupport ne correspondent pas à l'épaisseur résiduelle de paroi du tube seul. Les valeurs correspondent au cumul de l'épaisseur de paroi du tube, de la selle renfort externe et localement du tube support.

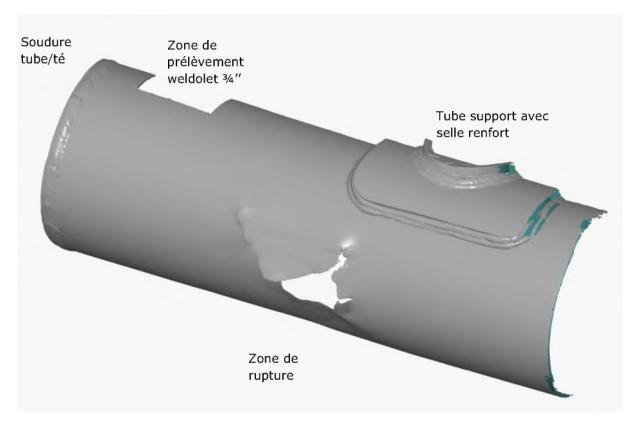
Echelle de 0 à 18mm

selle renfort

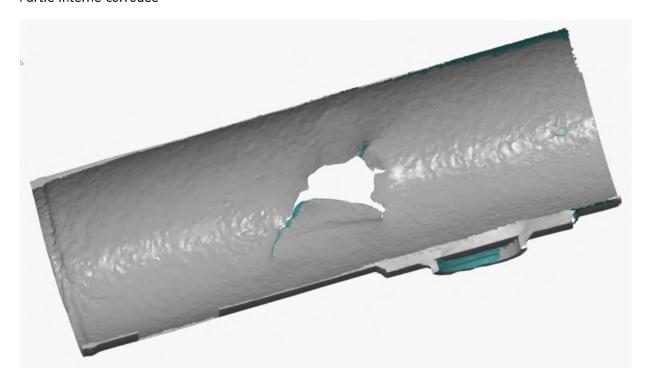
RAPPORT TECHNIQUE

Echelle de 0 à 5.5mm

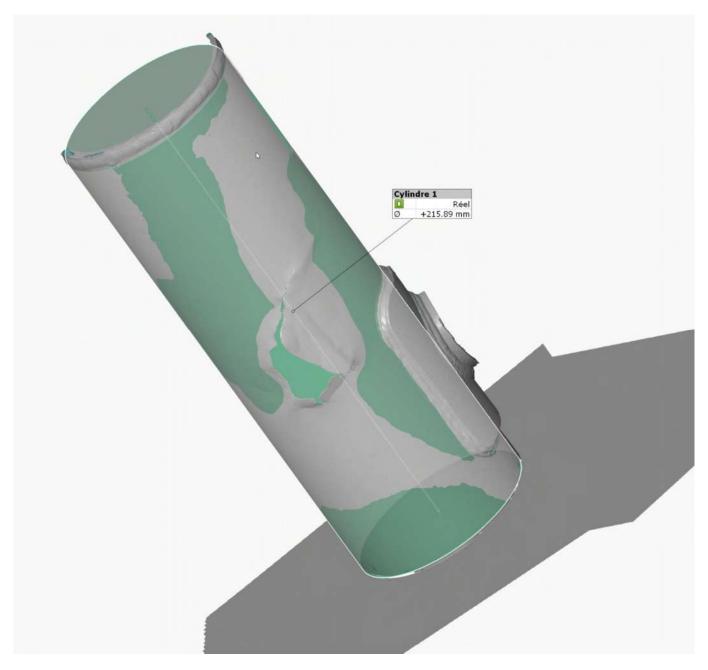
4.1.5. Mesure du volume interne


Les zones dites « ouvertes » ont été rebouchées pour une mesure fiable.

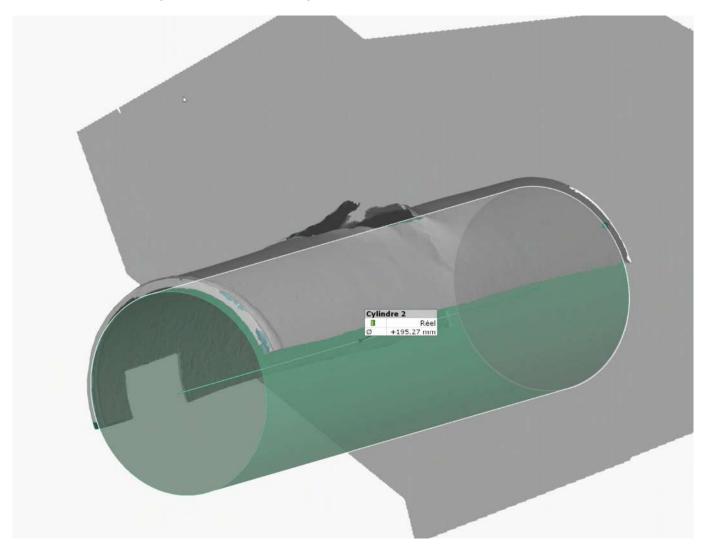
Un volume de 11278cm3 a été relevé.



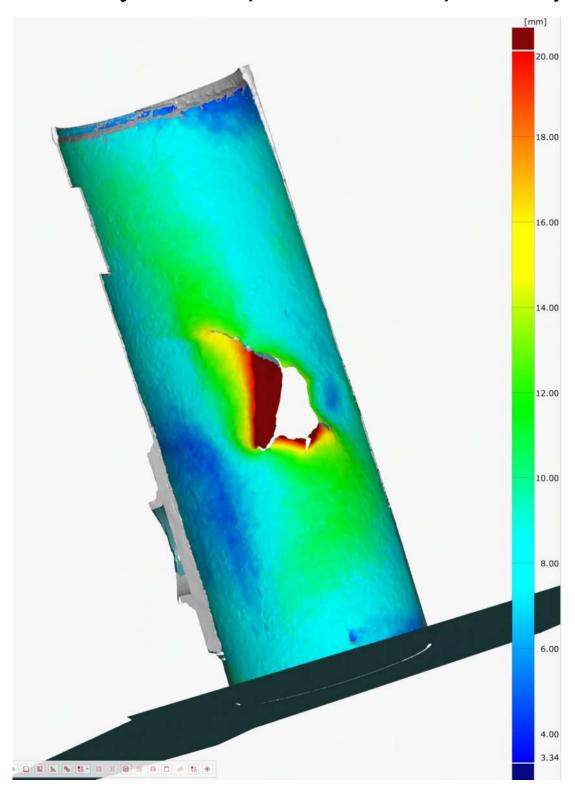
4.2.Demi-tube percé (avec zone de rupture)


Partie externe

Partie interne corrodée



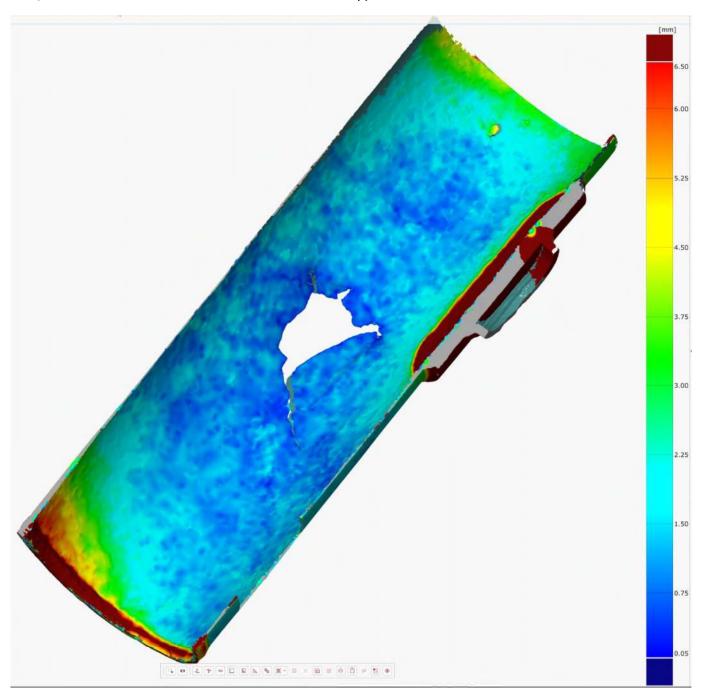
4.2.1. Définition d'un cylindre externe ajusté de référence


Pour se faire, il a été choisi les zones pertinentes. Toutes les parties présentant une semelle, un piquage ou bien une déformation liée à la rupture ont été évitées. Un diamètre externe a pu en être extrait avec pour valeur 215.89mm.

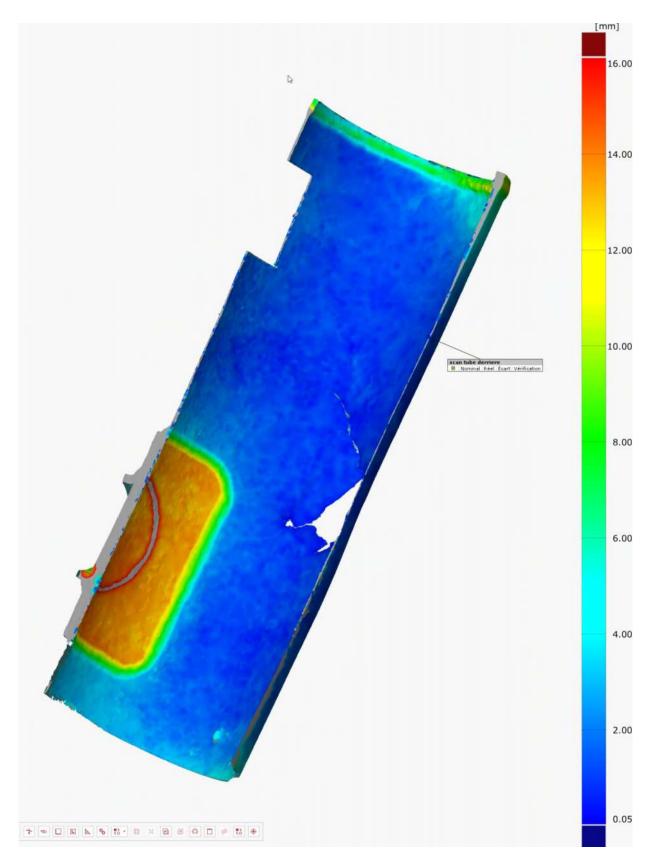
4.2.2. Définition du cylindre interne théorique

Nous sommes partis du cylindre externe avec une réduction du diamètre équivalente à l'épaisseur nominale de 10.31mm d'origine. Celui-ci a pour diamètre ${\bf 195.27mm}$.

4.2.3. Ecart de géométrie entre la peau interne corrodée et le cylindre interne ajusté

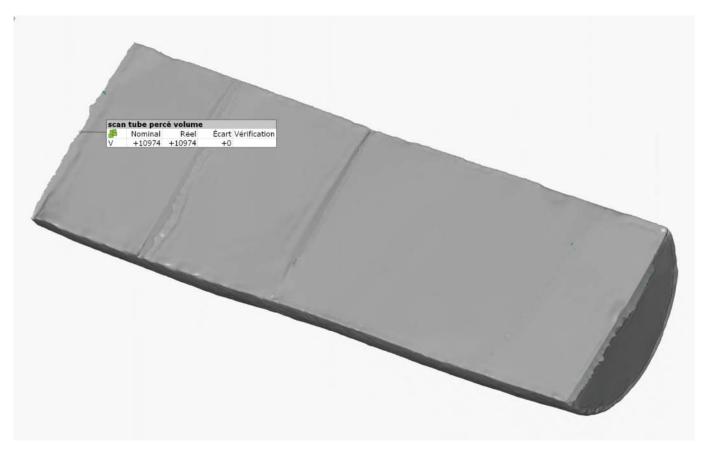


Une échelle de couleur représentant la distance en mm entre le cylindre interne et la peau interne. L'échelle va de 3.34mm à 20mm.



4.2.4. Mesure de l'épaisseur résiduelle

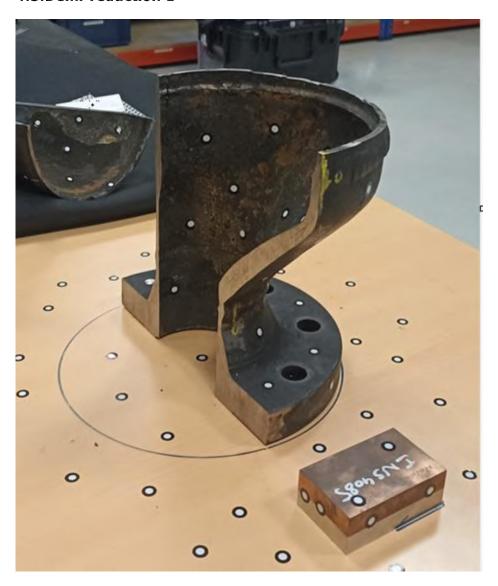
Ceci correspond à l'épaisseur entre la peau externe et l'interne scanné en tous points. Deux échelles ont été utilisées pour mettre en évidence les mesures effectuées dans la zone du tube-support et dutube 8". Attention, les valeurs indiquées sur la représentation graphique au niveau du tube-support ne correspondent pas à l'épaisseur résiduelle de paroi du tube seul. Les valeurs correspondent au cumul de l'épaisseur de paroi du tube, de la selle renfort externe et localement du tube support.



Echelle de 0 à 6.5mm

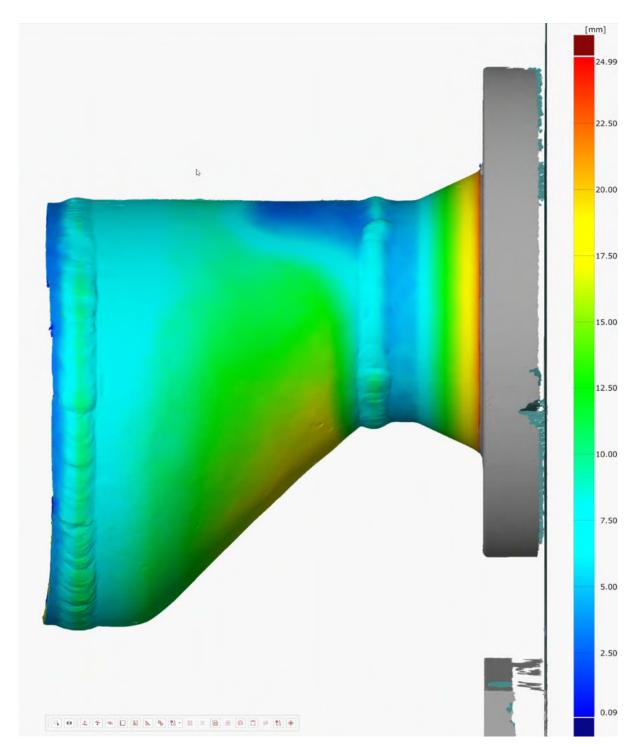
Echelle de 0 à 16mm

4.2.5. Mesure du volume interne

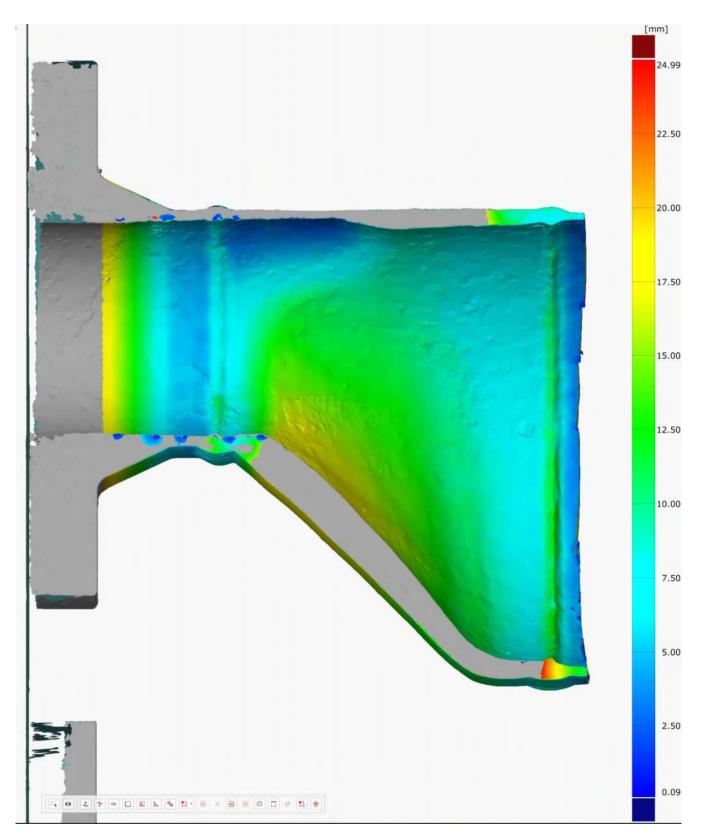


Les zones dites « ouvertes » ont été rebouchées pour une mesure fiable.

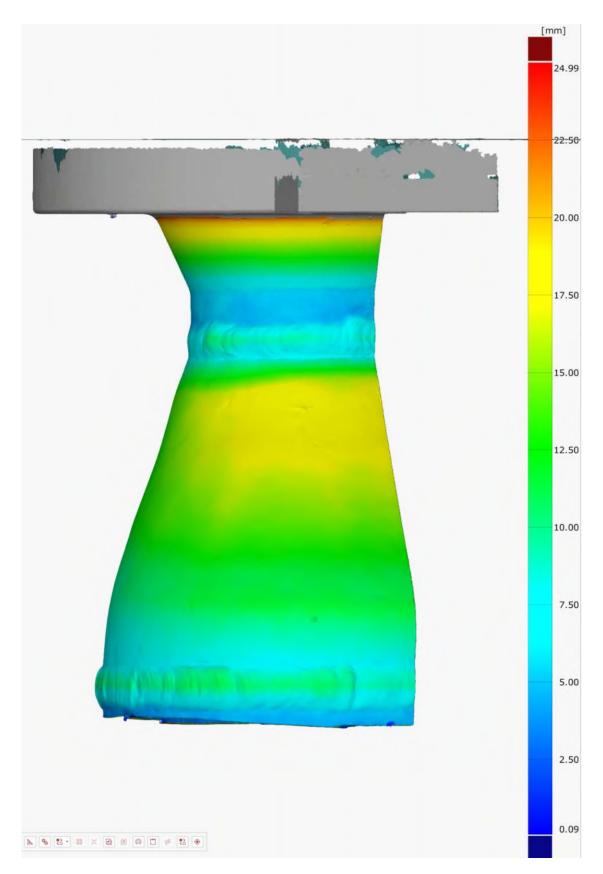
Un volume de 10974cm3 a été relevé.

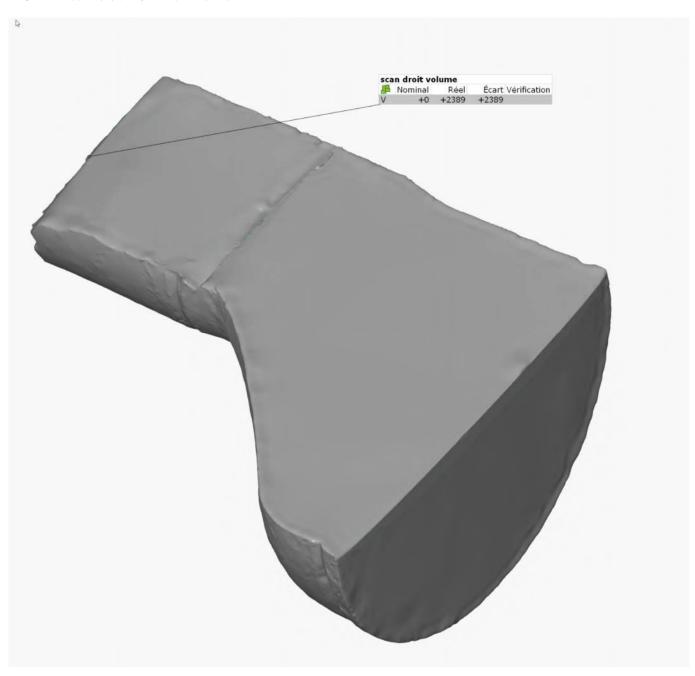


4.3.Demi-réduction 1


4.3.1. Mesure de l'épaisseur résiduelle

Ceci correspond à l'épaisseur entre la peau externe et l'interne scanné en tous points.


Echelle de 0 à 25mm


Echelle de 0 à 25mm

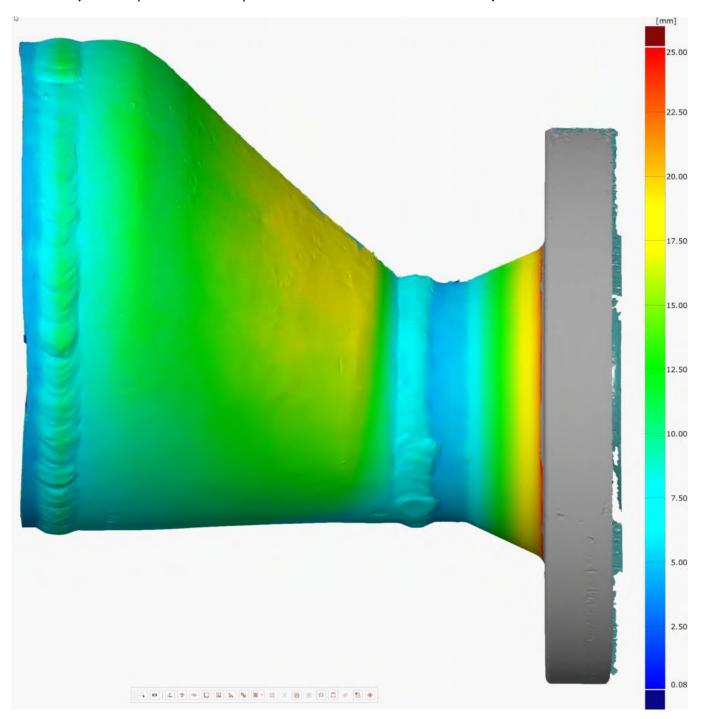
Echelle de 0 à 25mm

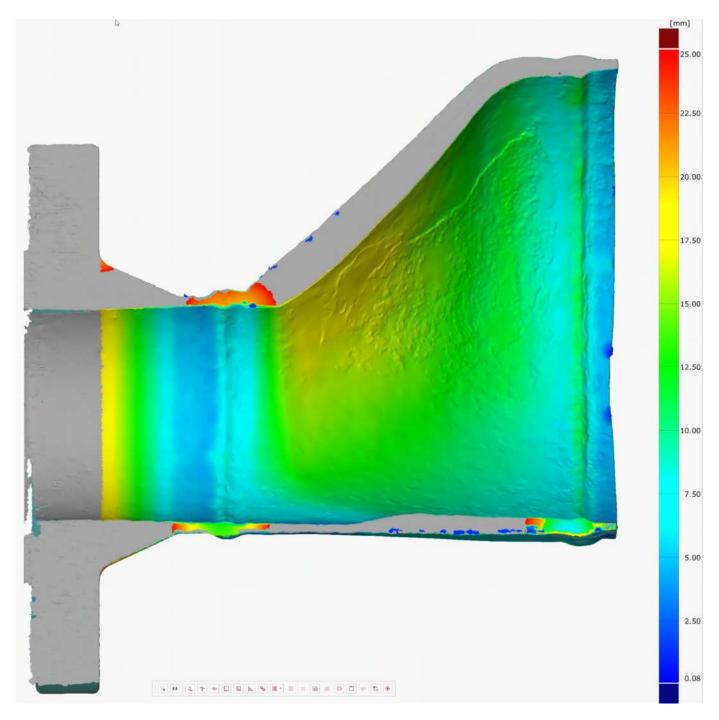
4.3.2. Mesure du volume interne



Les zones dites « ouvertes » ont été rebouchées pour une mesure fiable.

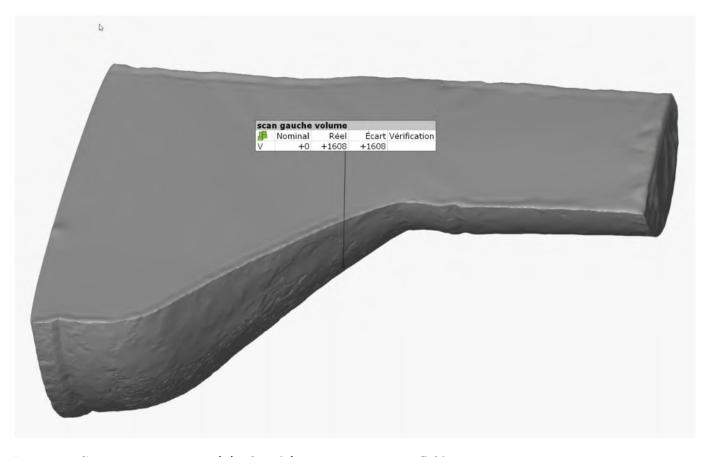
Un volume de 2389cm3 a été relevé.


4.4.Demi-réduction 2



4.4.1. Mesure de l'épaisseur résiduelle

Ceci correspond à l'épaisseur entre la peau externe et l'interne scanné en tous points.



Echelle de 0 à 25mm

Echelle de 0 à 25mm

4.4.2. Mesure du volume interne

Les zones dites « ouvertes » ont été rebouchées pour une mesure fiable.

Un volume de 1608cm3 a été relevé.

5. Conclusions

5.1.Tube

Le minimum d'épaisseur résiduel est compris entre 0.75mm et 1.75mm

Le volume total mesuré est de 10974+11278=22252cm3

5.2. Réduction

Le volume total mesuré est de 2389+1608=3997cm3

Le minimum d'épaisseur résiduel est compris entre 1mm et 3mm

ANNEXE D

EXAMENV ISUEL INTERNE

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015

FIGURE 1
VUE D'ENSEMBLE DE LA SURFACE INTERNE COTE DECHIRURE

FIGURE 2
VUE D'ENSEMBLE DE LA SURFACE INTERNE COTE OPPOSE A LA DECHIRURE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	Aute

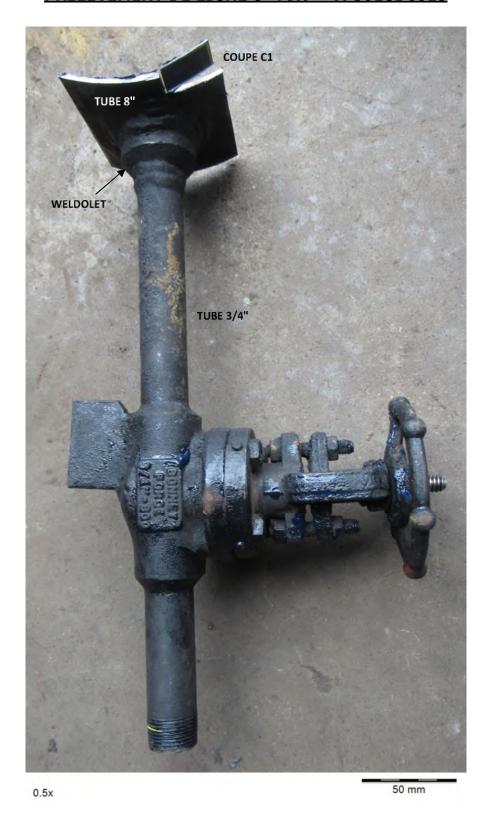


FIGURE 3
VUE D'ENSEMBLE DU PIQUAGE 3/4" APRES PRELEVEMENT

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	dite

FIGURE 4
SURFACE INTERNE DU TUBE 8" AU DROIT DU PRELEVEMENT DU PIQUAGE 3/4"

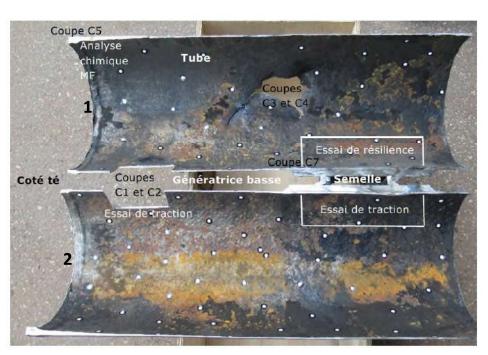
FIGURE 5
VUE D'ENSEMBLE APRES DECOUPE DIAMETRALE DU PIQUAGE 3/4"

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	atte

FIGURE 6
DETAIL DE LA FIGURE 5 SURFACE INTERNE DU PIQUAGE 3/4"

FIGURE 7
AUTRE VUE DE LA SURFACE INTERNE DU PIQUAGE 3/4"

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	atte


FIGURE 8
SURFACE INTERNE DU PIQUAGE 3/4" APRES NETTOYAGE A L'EAU SAVONNEUSE

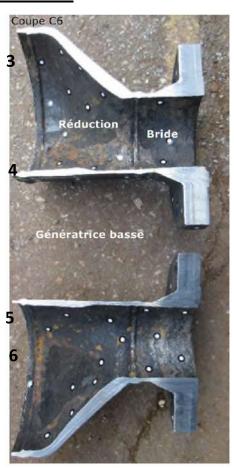


FIGURE 9
DETAIL DE LA FIGURE 8 SURFACE INTERNE DE LA SOUDURE TUBE 8" / WELDOLET

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	dite

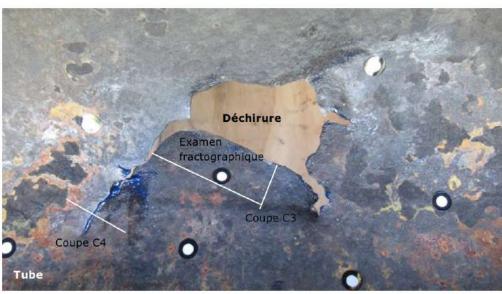


FIGURE 10 LOCALISATION DES EXAMENS SUR LES VUES INTERNES (APRES SCAN 3D)

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	Alte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 DETAILS DU COTE INTERNE DES SOUDURES DE RABOUTAGE

FIGURE 11
DETAIL 1 DE LA FIGURE 10
SOUDURE TUBE / TE

FIGURE 12 DETAIL DE LA FIGURE 11

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	atte

5 mm

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 DETAILS DU COTE INTERNE DES SOUDURES DE RABOUTAGE

FIGURE 13 DETAIL 2 DE LA FIGURE 10 SOUDURE TUBE / TE

FIGURE 14
DETAIL 3 DE LA FIGURE 10
SOUDURE TUBE / REDUCTION

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	Ante

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 DETAILS DU COTE INTERNE DES SOUDURES DE RABOUTAGE

FIGURE 15
DETAIL DE LA FIGURE 14
SOUDURE TUBE / REDUCTION

FIGURE 16
DETAIL 4 DE LA FIGURE 10
SOUDURE TUBE / REDUCTION

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	dite

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 DETAILS DU COTE INTERNE DES SOUDURES DE RABOUTAGE

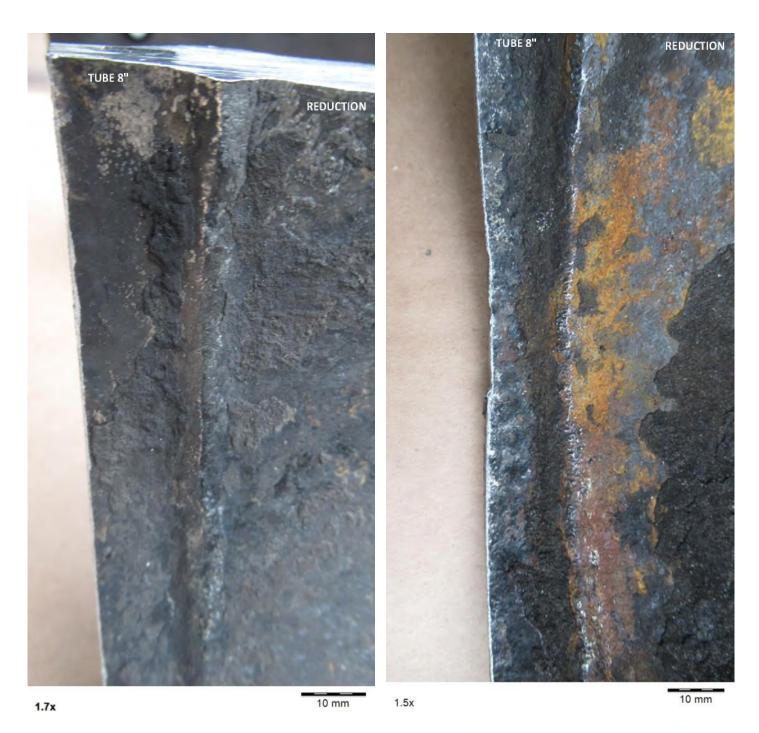


FIGURE 17
DETAIL 5 DE LA FIGURE 10
SOUDURE TUBE / REDUCTION

FIGURE 18
DETAIL 6 DE LA FIGURE 10
SOUDURE TUBE / REDUCTION

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	19/04/2024	Ante

ANNEXE E

EXAMEN METALLOGRAPHIQUE

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C1 EN GENERATRICE BASSE DU TUBE A PROXIMITE DU PIQUAGE 3/4"

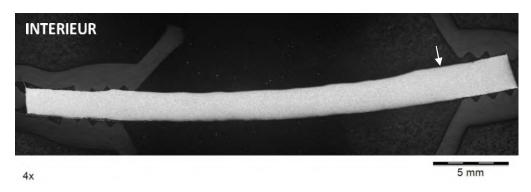


FIGURE 1
VUE D'ENSEMBLE (EXAMEN MICROGRAPHIQUE)

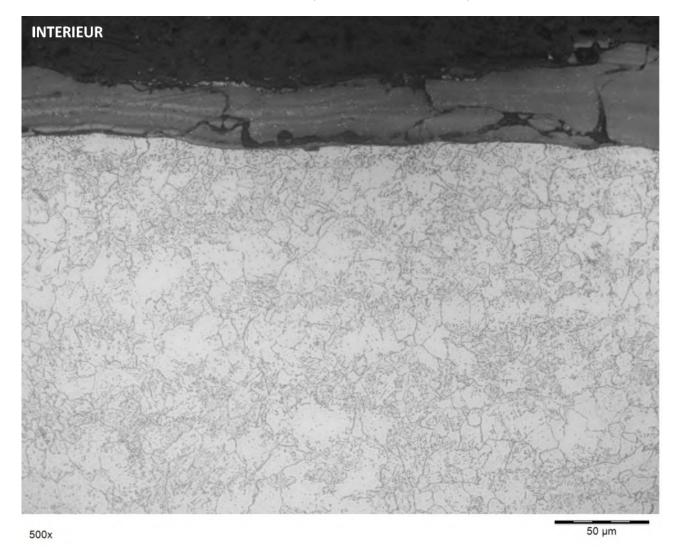


FIGURE 2
DETAIL 1 DE LA FIGURE 1 EN PEAU INTERNE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	Alte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C1 EN GENERATRICE BASSE DU TUBE A PROXIMITE DU PIOUAGE 3/4"

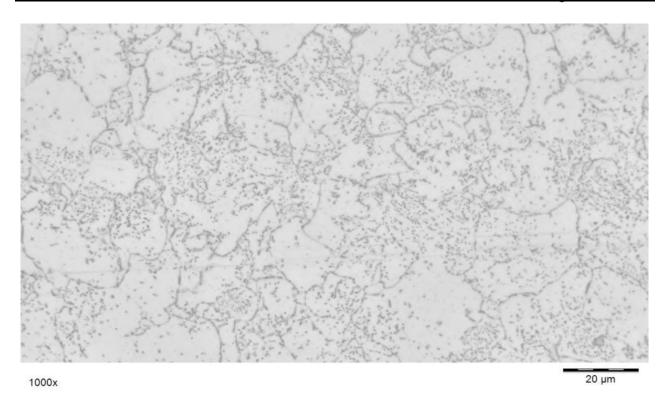


FIGURE 3
DETAIL 2 DE LA FIGURE 1 A MI-EPAISSEUR

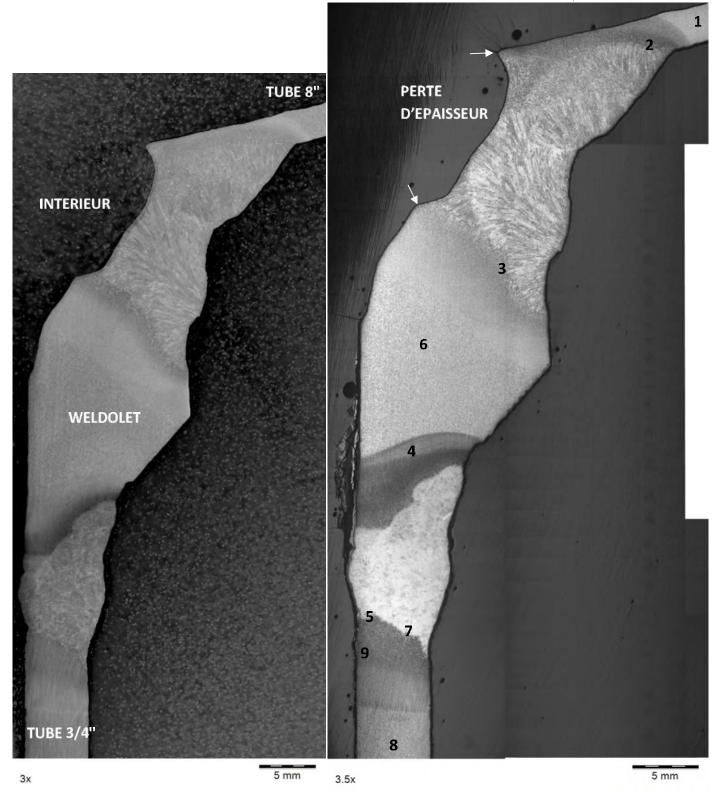


FIGURE 4
DETAIL 3 DE LA FIGURE 1 EN PEAU EXTERNE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	attite

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIOUAGE 3/4"

FIGURE 5VUE D'ENSEMBLE (EXAMEN MACROGRAPHIQUE)

FIGURE 6
VUE D'ENSEMBLE (EXAMEN MICROGRAPHIQUE)

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	athte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015

COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIOUAGE 3/4"

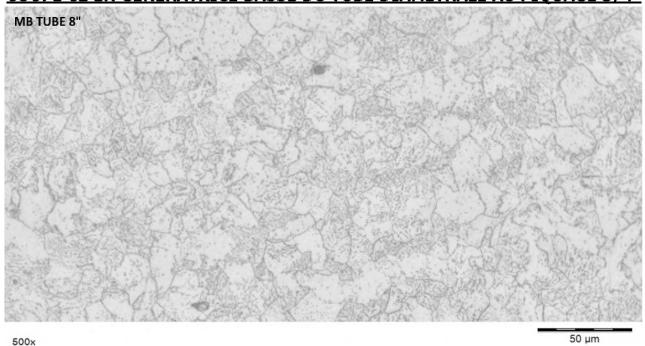


FIGURE 7
DETAIL 1 DE LA FIGURE 6 METAL DE BASE DU TUBE 8"

FIGURE 8 DETAIL 2 DE LA FIGURE 6 ZONE DE LIAISON COTE TUBE 8" DE LA SOUDURE TUBE 8" / WELDOLET

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	atte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015

COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIOUAGE 3/4"

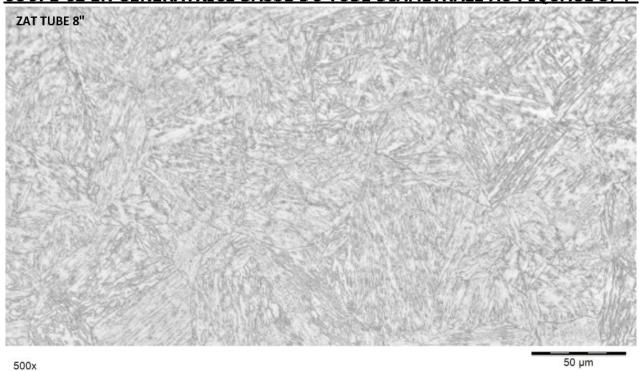


FIGURE 9
ZONE AFFECTEE THERMIQUEMENT COTE TUBE 8" DE LA SOUDURE TUBE 8" / WELDOLET

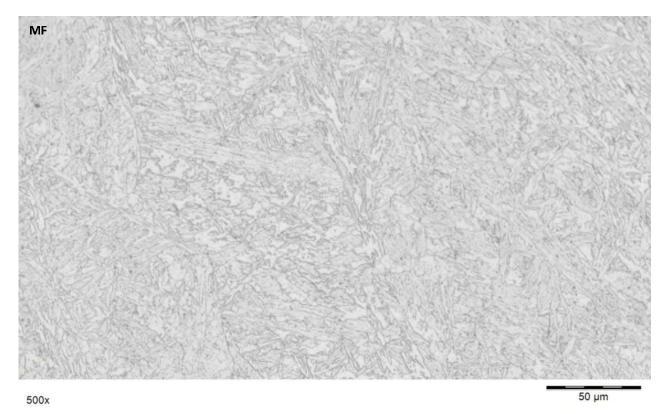


FIGURE 10
ZONE FONDUE DE LA SOUDURE TUBE 8" / WELDOLET

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	atte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIQUAGE 3/4"

FIGURE 11

DETAIL 3 DE LA FIGURE 6

ZONE DE LIAISON COTE WELDOLET DE LA SOUDURE TUBE 8" / WELDOLET

FIGURE 12
ZONE AFFECTEE THERMIQUEMENT COTE WELDOLET DE LA SOUDURE TUBE 8" / WELDOLET

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	atte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIOUAGE 3/4"

FIGURE 13 DETAIL 4 DE LA FIGURE 6

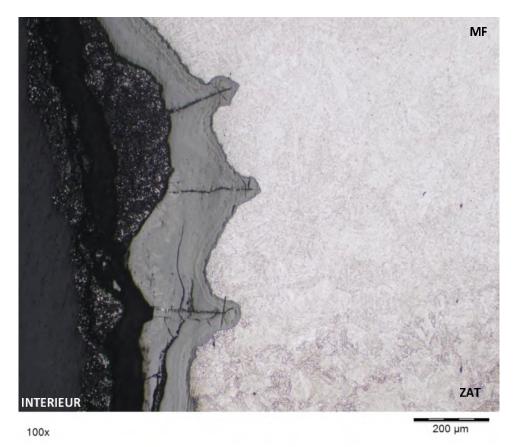


FIGURE 14
DETAIL 5 DE LA FIGURE 6 EN PEAU INTERNE COTE TUBE 3/4"

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	atte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIOUAGE 3/4"

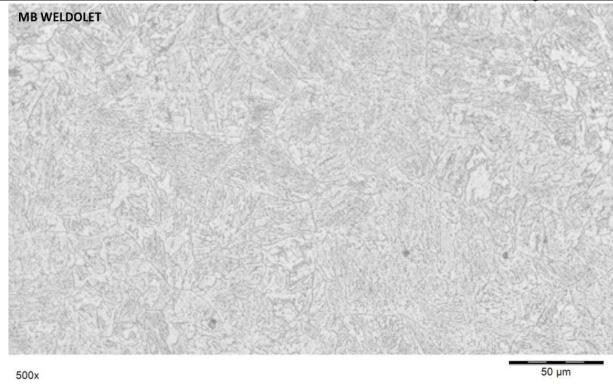


FIGURE 15
DETAIL 6 DE LA FIGURE 6 MICROSTRUCTURE EN METAL DE BASE DU WELDOLET

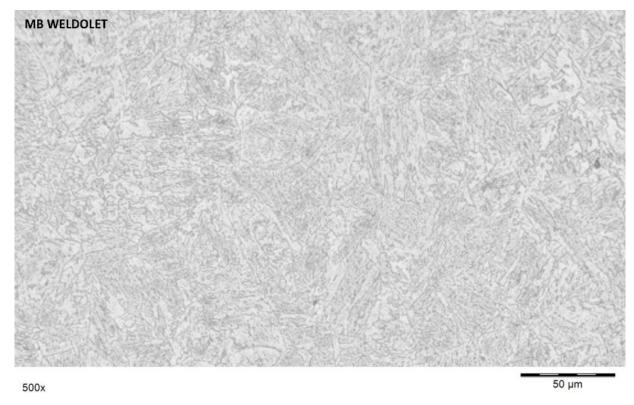
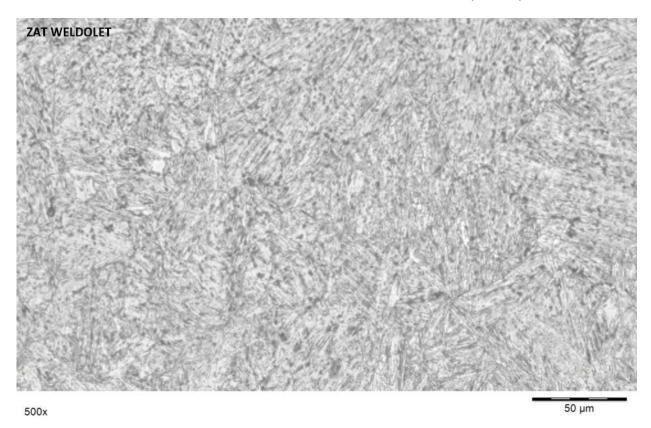


FIGURE 16
AUTRE VUE DE LA MICROSTRUCTURE EN METAL DE BASE DU WELDOLET

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	atte

100x

EXAMEN METALLOGRAPHIQUE

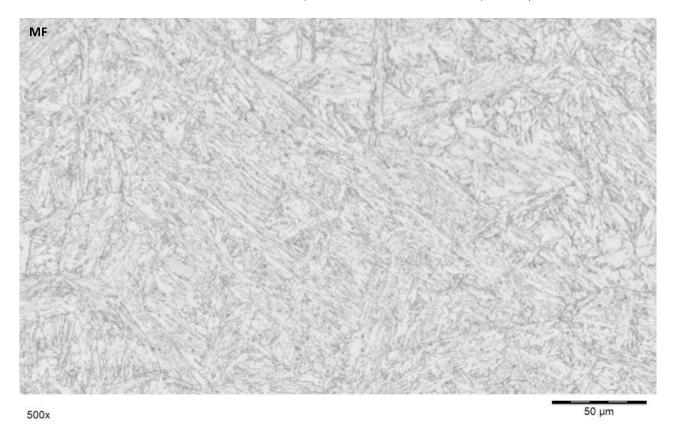

200 µm

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015

COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIOUAGE 3/4"

FIGURE 17
DETAIL DE LA FIGURE 13
ZONE DE LIAISON COTE WELDOLET DE LA SOUDURE WELDOLET / TUBE 3/4"

FIGURE 18 ZONE AFFECTEE THERMIQUEMENT COTE WELDOLET DE LA SOUDURE WELDOLET / TUBE 3/4"


	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	Atte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIOUAGE 3/4"

FIGURE 19
DETAIL 7 DE LA FIGURE 6
ZONE DE LIAISON COTE TUBE 3/4" DE LA SOUDURE WELDOLET / TUBE 3/4"

FIGURE 20 ZONE FONDUE DE LA SOUDURE WELDOLET / TUBE 3/4"

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	atte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIOUAGE 3/4"

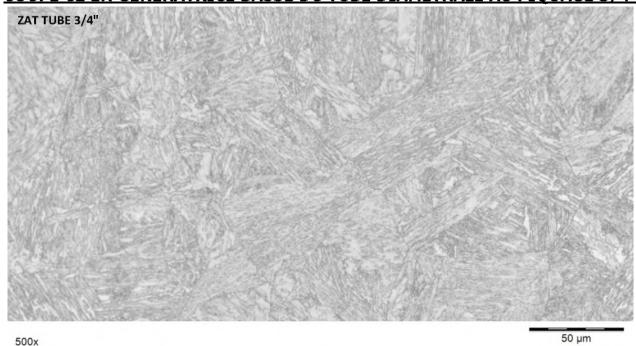


FIGURE 21
ZONE AFFECTEE THERMIQUEMENT COTE TUBE 3/4" DE LA SOUDURE WELDOLET / TUBE 3/4"

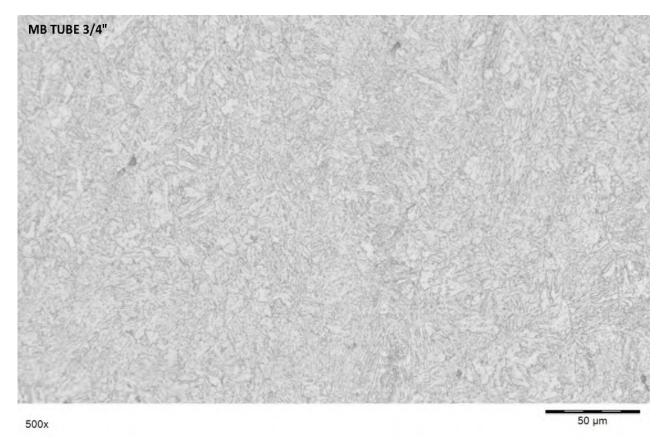


FIGURE 22
DETAIL 8 DE LA FIGURE 6 METAL DE BASE DU TUBE 3/4"

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	atte

75x

EXAMEN METALLOGRAPHIQUE

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 **COUPE C2 EN GENERATRICE BASSE DU TUBE DIAMETRALE AU PIQUAGE 3/4"**

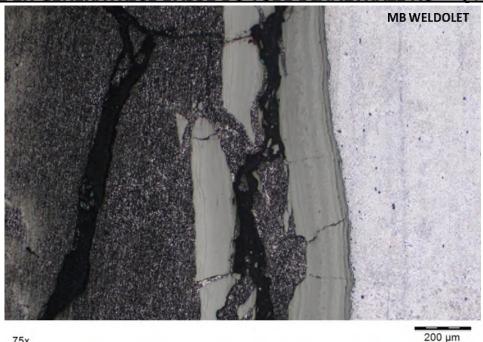


FIGURE 23



FIGURE 24 DETAIL 9 DE LA FIGURE 6 EN SURFACE INTERNE DU TUBE 3/4"

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	atte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 **COUPE C3 AU DROIT DE LA DECHIRURE DU TUBE 8"**

FIGURE 25 VUE D'ENSEMBLE (EXAMEN MICROGRAPHIQUE)

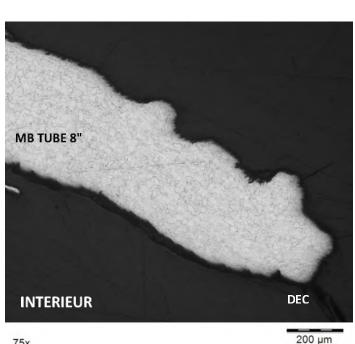


FIGURE 26 DETAIL 1 DE LA FIGURE 25

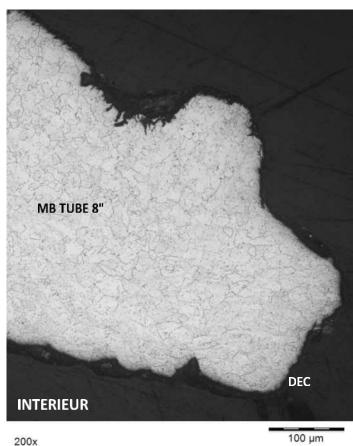


FIGURE 27 DETAIL DE LA FIGURE 26

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	Alte

75x

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C3 AU DROIT DE LA DECHIRURE DU TUBE 8"

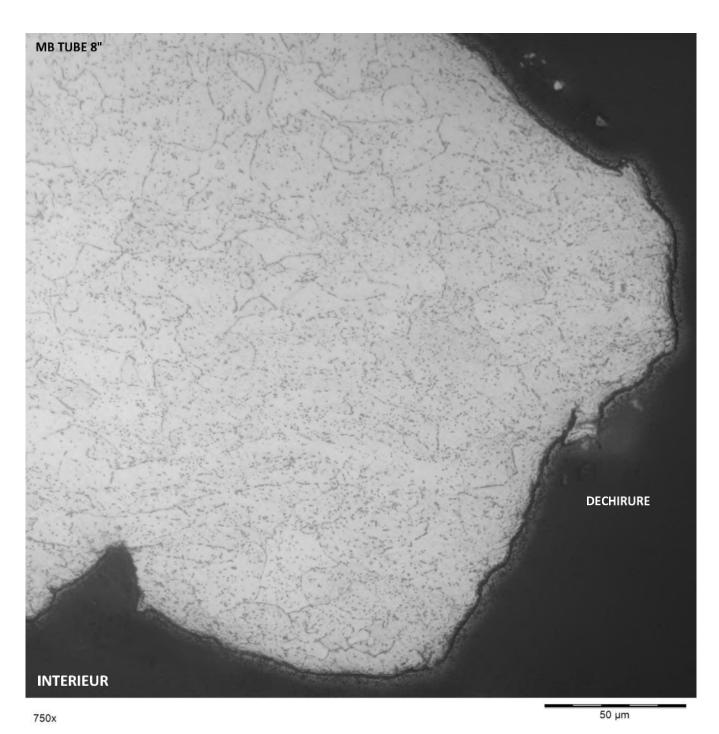


FIGURE 28 DETAIL DE LA FIGURE 27

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	other

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C3 AU DROIT DE LA DECHIRURE DU TUBE 8"

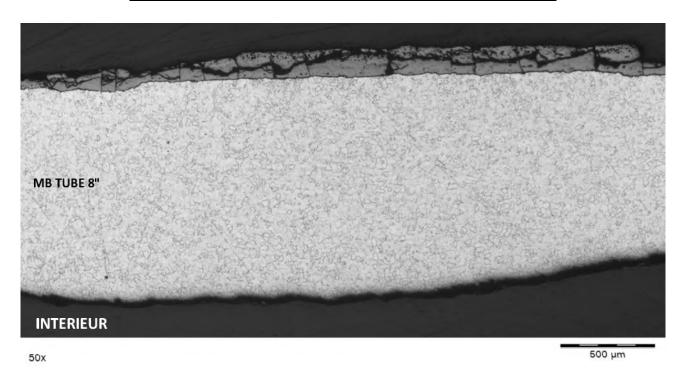


FIGURE 29 DETAIL 2 DE LA FIGURE 25

FIGURE 30 DETAIL DE LA FIGURE 29 A MI-EPAISSEUR

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	athte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C4 EN ZONE DE PROPAGATION DE LA DECHIRURE DU TUBE 8"

FIGURE 31 VUE D'ENSEMBLE (EXAMEN MICROGRAPHIQUE)

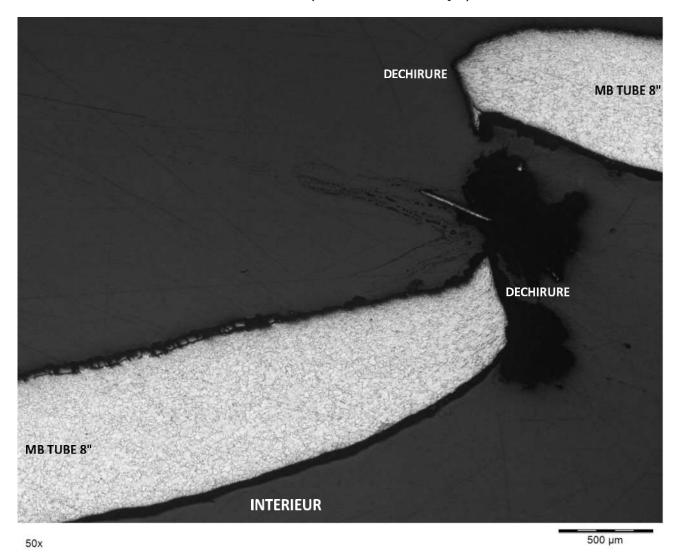


FIGURE 32 DETAIL 1 DE LA FIGURE 30

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	Att

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C4 EN ZONE DE PROPAGATION DE LA DECHIRURE DU TUBE 8"

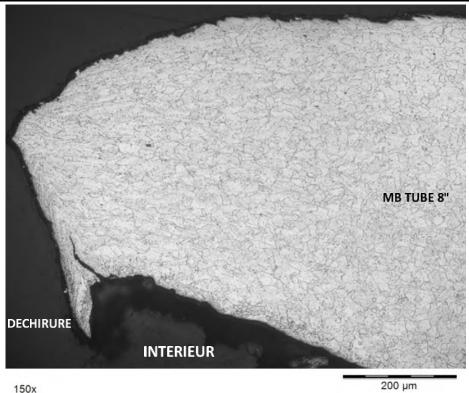


FIGURE 33 DETAIL 1 DE LA FIGURE 31

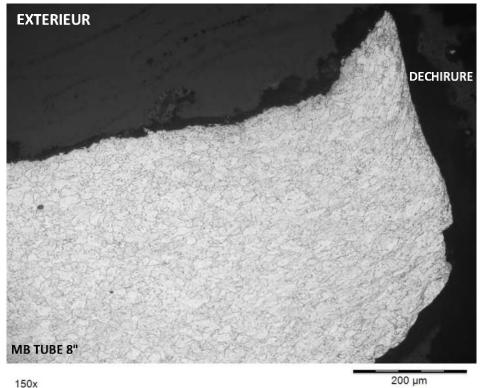


FIGURE 34 DETAIL 2 DE LA FIGURE 31

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	Att

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C4 EN ZONE DE PROPAGATION DE LA DECHIRURE DU TUBE 8"

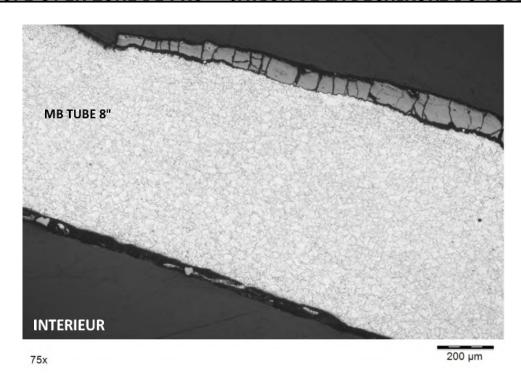


FIGURE 35 DETAIL 3 DE LA FIGURE 31

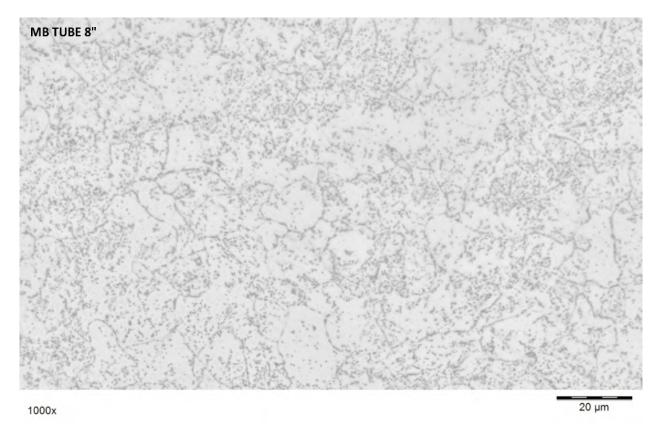


FIGURE 36
DETAIL DE LA FIGURE 34 A MI-EPAISSEUR

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	athte

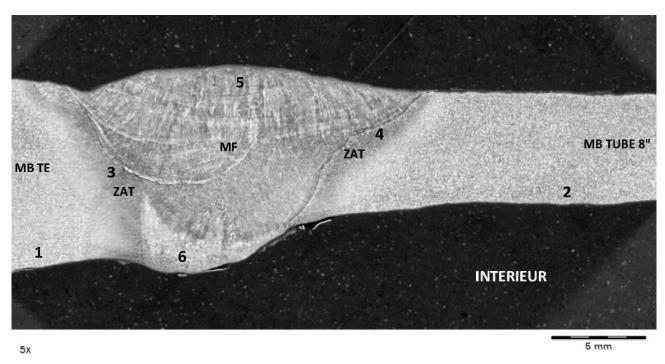


FIGURE 37 VUE D'ENSEMBLE (EXAMEN MACROGRAPHIQUE)

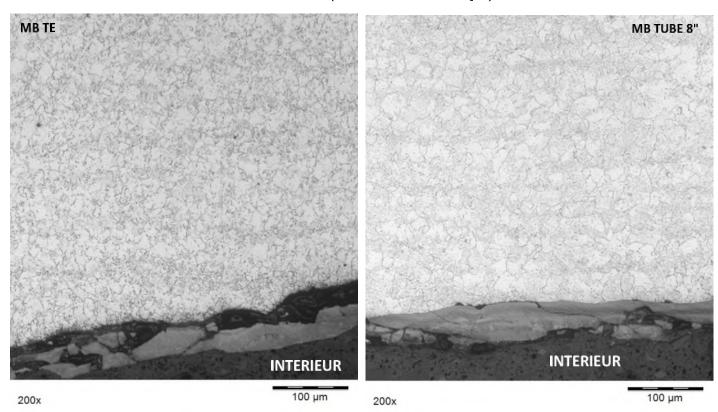


FIGURE 38 DETAIL 1 DE LA FIGURE 37

FIGURE 39 DETAIL 2 DE LA FIGURE 37

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	athte

EXAMEN METALLOGRAPHIQUE PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 **COUPE C5 EN GENERATRICE HAUTE AU DROIT DE LA SOUDURE TE / TUBE**

FIGURE 40 MICROSTRUCTURE A MI-EPAISSEUR DU TE

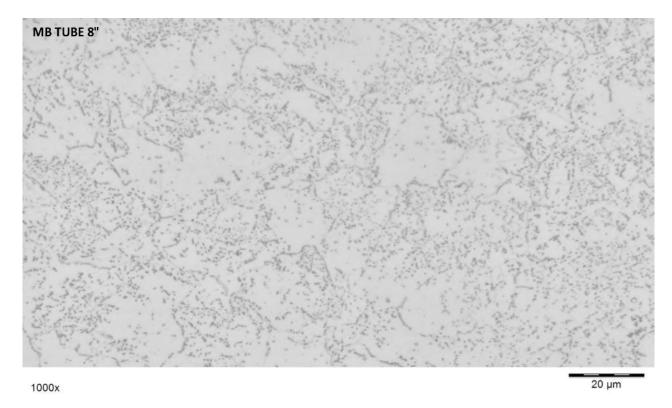


FIGURE 41 MICROSTRUCTURE A MI-EPAISSEUR DU TUBE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	att

FIGURE 42
DETAIL 3 DE LA FIGURE 37 ZONE AFFECTEE THERMIQUEMENT COTE TE

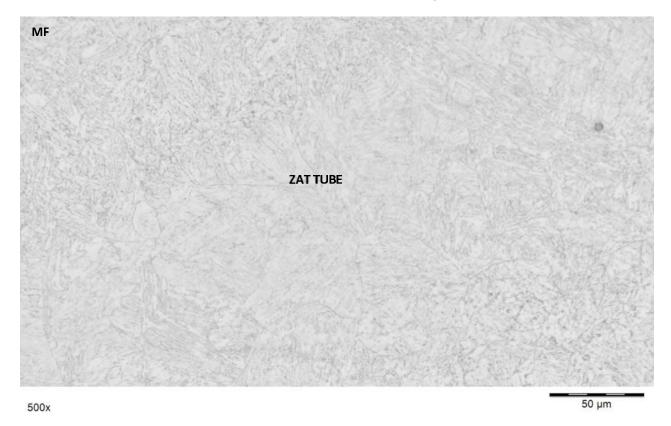


FIGURE 43
DETAIL 4 DE LA FIGURE 37 ZONE DE LIAISON COTE TUBE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	other

EXAMEN METALLOGRAPHIQUE PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 **COUPE C5 EN GENERATRICE HAUTE AU DROIT DE LA SOUDURE TE / TUBE**

FIGURE 44 DETAIL 5 DE LA FIGURE 37 ZONE FONDUE EN PASSE EXTERNE

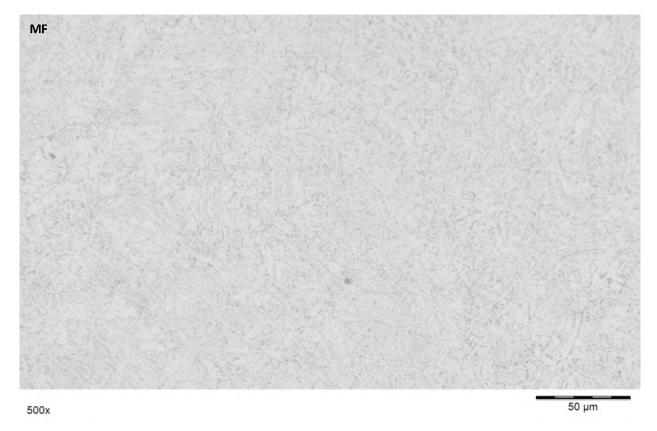


FIGURE 45 DETAIL 6 DE LA FIGURE 37 ZONE FONDUE COTE INTERNE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	Att

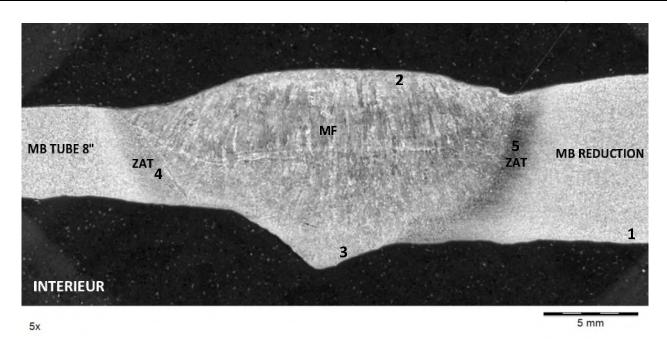


FIGURE 46
VUE D'ENSEMBLE (EXAMEN MACROGRAPHIQUE)

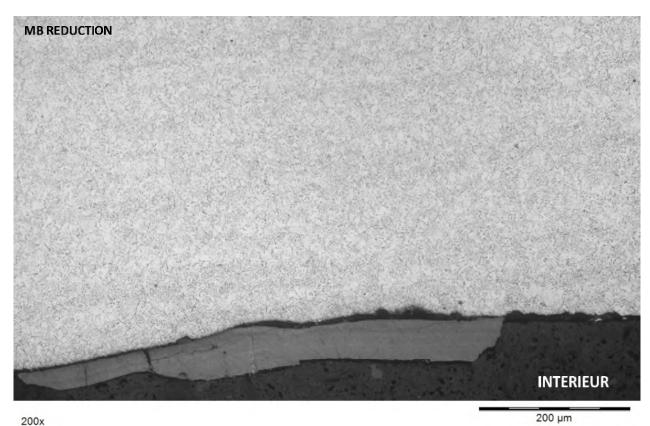


FIGURE 47
DETAIL 1 DE LA FIGURE 46 PEAU INTERNE COTE REDUCTION

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	athte

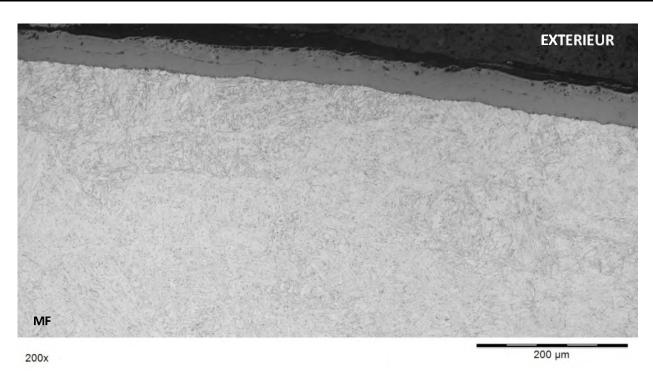

FIGURE 48 MICROSTRUCTURE A MI-EPAISSEUR DU TUBE

FIGURE 49 MICROSTRUCTURE A MI-EPAISSEUR DE LA REDUCTION

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	athte

FIGURE 50DETAIL 2 DE LA FIGURE 46 ZONE FONDUE EN PASSE EXTERNE

FIGURE 51 DETAIL DE LA FIGURE 50

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	athte

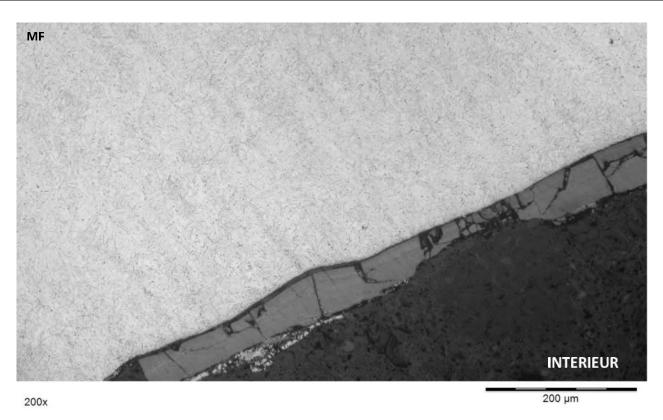


FIGURE 52
DETAIL 3 DE LA FIGURE 46 ZONE FONDUE COTE INTERNE

FIGURE 53 DETAIL DE LA FIGURE 52

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	athte

FIGURE 54
DETAIL 4 DE LA FIGURE 46 ZONE AFFECTEE THERMIQUEMENT COTE TUBE

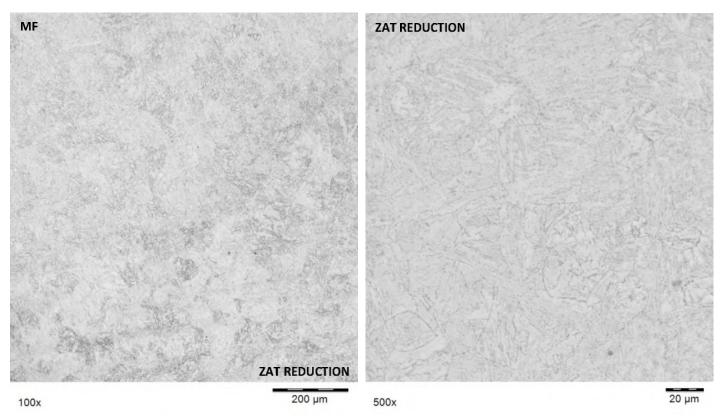


FIGURE 55

DETAIL 5 DE LA FIGURE 46

ZONE DE LIAISON COTE REDUCTION

FIGURE 56

DETAIL DE LA FIGURE 55

ZONE AFFECTEEE THERMIQUEMENT COTE REDUCTION

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	athte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C7 EN GENERATRICE BASSE AU DROIT DE LA SOUDURE TUBE / SEMELLE

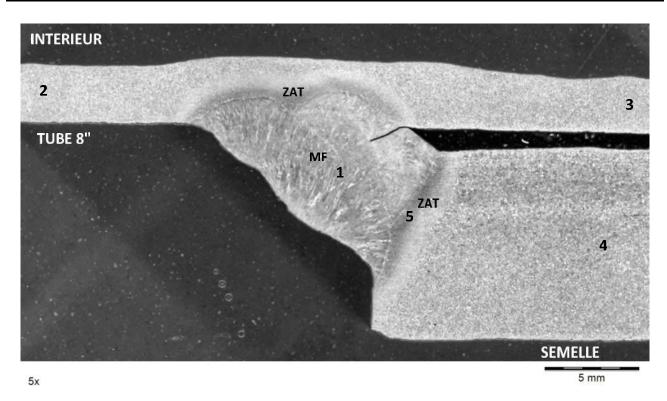


FIGURE 57
VUE D'ENSEMBLE (EXAMEN MACROGRAPHIQUE)

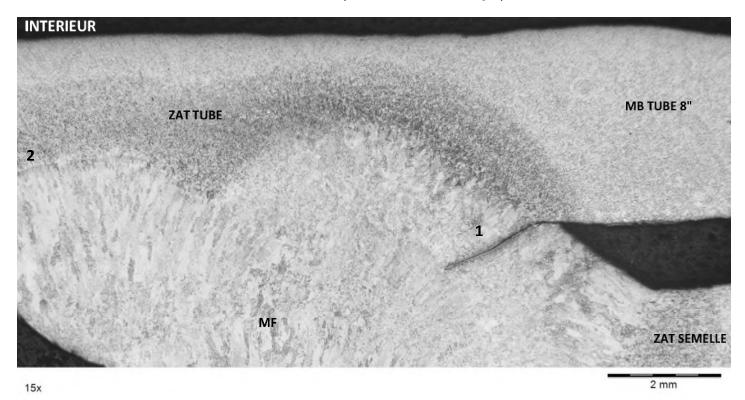


FIGURE 58
DETAIL 1 DE LA FIGURE 57 (EXAMEN MICROGRAPHIQUE)

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	Atte

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C7 EN GENERATRICE BASSE AU DROIT DE LA SOUDURE TUBE / SEMELLE

FIGURE 59
DETAIL 1 DE LA FIGURE 58 FISSURATION EN ZONE FONDUE

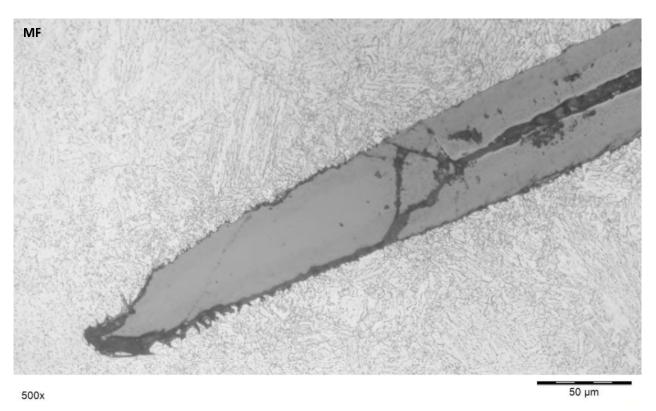
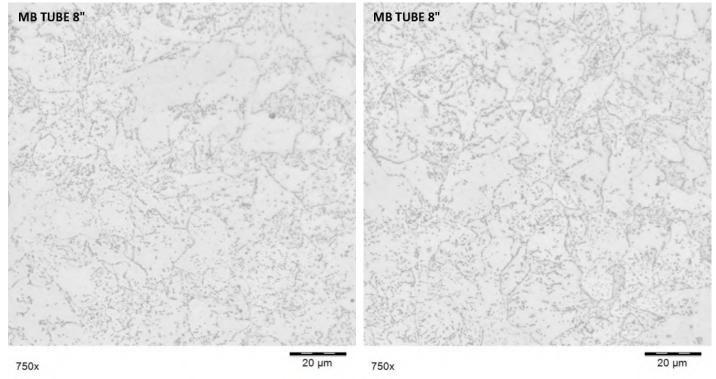
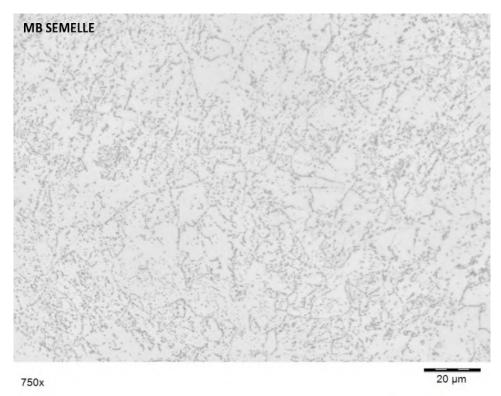



FIGURE 60
DETAIL DE LA FIGURE 59 EN EXTREMITE DE LA FISSURE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	other



PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C7 EN GENERATRICE BASSE AU DROIT DE LA SOUDURE TUBE / SEMELLE

FIGURE 61 DETAIL 2 DE LA FIGURE 57 METAL DE BASE DU TUBE HORS SEMELLE

FIGURE 62
DETAIL 3 DE LA FIGURE 57
METAL DE BASE DU TUBE SOUS LA SEMELLE

FIGURE 63DETAIL 4 DE LA FIGURE 57 METAL DE BASE DE LA SEMELLE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	dite

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 COUPE C7 EN GENERATRICE BASSE AU DROIT DE LA SOUDURE TUBE / SEMELLE

FIGURE 64
DETAIL 2 DE LA FIGURE 58 ZONE AFFECTEE THERMIQUEMENT COTE TUBE

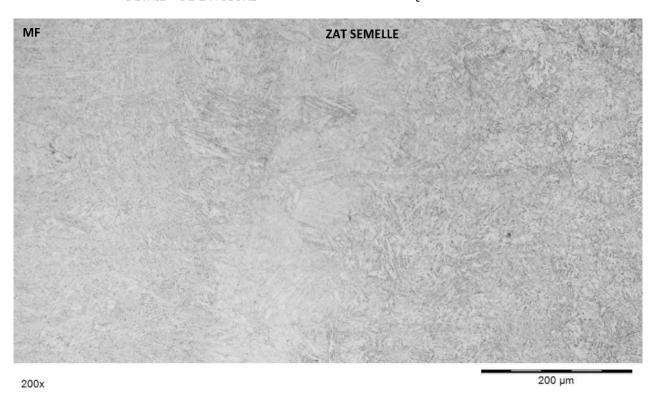


FIGURE 65

DETAIL 5 DE LA FIGURE 57 ZONE AFFECTEE THERMIQUEMENT COTE SEMELLE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	other

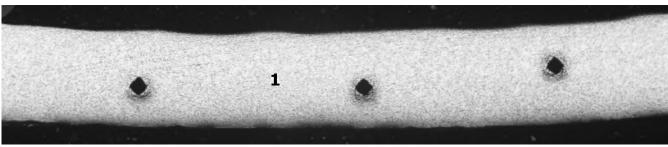
ANNEXE F

MESURES DE DURETE SUR COUPES

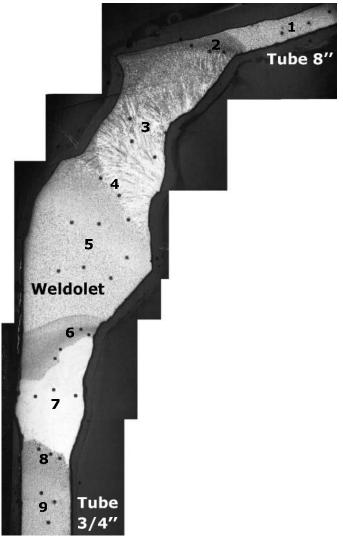
ESSAI DE DURETE

EXAMEN REALISE

Repère d'identification: Modalité d'essai : Identification machine


d'essai:

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 - Coupes C1 et C2


NF EN ISO 6507-1/2018

VICKERS ARMSTRONGS N°254669

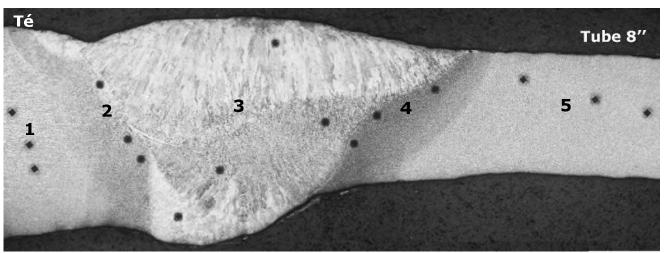
Essai réalisé par : M. MONTALBETTI le 18/04/2024 à E3C Villepinte

COUPE C1

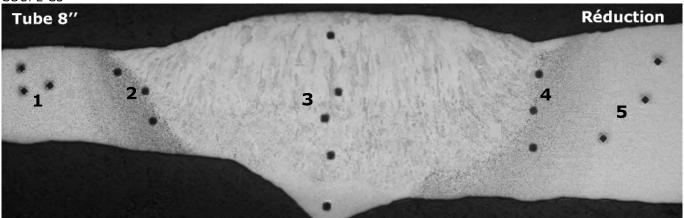
COUPE C2

	Nom Prénom	N° carte	Date	Visa
Rédigé par	MONTALBETTI Michel	0102	18/04/2024	attite

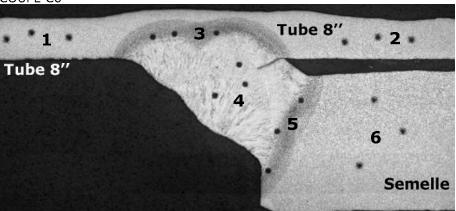
ESSAI DE DURETE


EXAMEN REALISE

Repère d'identification : Modalité d'essai : Identification machine d'essai : PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 - Coupes C5 à C7


NF EN ISO 6507-1/2018

VICKERS ARMSTRONGS N°254669


Essai réalisé par : M. MONTALBETTI le 18/04/2024 à E3C Villepinte

COUPE C5

COUPE C6

COUPE C7

	Nom Prénom	Nº carte	Date	Visa
Rédigé par	MONTALBETTI Michel	0102	18/04/2024	atte

ESSAI DE DURETE

EXAMEN REALISE

Repère d'identification : PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015

Coupes C1, C2, C5, C6 et C7 NF EN ISO 6507-1/2018

Identification machine

Modalité d'essai:

d'essai:

VICKERS ARMSTRONGS N°254669

Essai réalisé par : M. MONTALBETTI le 18/04/2024 à E3C Villepinte

RESULTATS

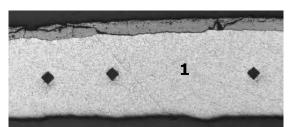
Repère coupe	Modalité	N° filiation	Localisation	Dureté	Dureté moyenne
C1		1	MB Tube 8"	138 - 142 - 144	141
		1	MB Tube 8"	143 - 140 - 138	140
		2	ZAT Tube 8"	216 - 209 - 202	209
		3	MF	197 - 199 - 194	197
		4	ZAT Weldolet	227 - 228 - 221	225
C2		5	MB Weldolet	164 - 185 - 176 185 - 191 - 198	183
		6	ZAT Weldolet	304 - 268 - 294 - 290	289
		7	MF	227 - 242 - 233	234
		8	ZAT Tube ¾"	249 - 245 - 245	246
		9	MB tube ¾"	179 – 193 – 195	189
		1	MB Té	133 - 136 - 138	136
		2	ZAT Té	235 – 232 – 230	232
C5	HV10	3	MF	225 - 209 - 213 - 203	212
	11010	4	ZAT Tube 8"	228 – 232 – 232	231
		5	MB Tube 8"	146 - 144 - 142	144
		1	MB Tube 8"	151 - 135 - 138	141
		2	ZAT Tube 8"	230 - 228 - 232	230
C6		3	MF	224 – 221 – 207 – 212 – 209	215
		4	ZAT Réduction	237 - 232 - 213	227
		5	MB Réduction	130 - 130 - 133	131
		1	MB Tube 8"	142 - 148 - 151	147
		2	MB Tube 8"	150 - 144 - 143	146
C7		3	ZAT Tube 8"	227 - 224 - 221	224
C/		4	MF	203 - 209 - 205	206
		5	ZAT Semelle	227 - 227 - 219	224
		6	MB Semelle	151 - 146 - 146	148

COMMENTAIRE

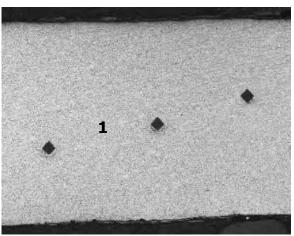
Sur l'ensemble des coupes, le niveau de dureté du tube 8" est compris globalement entre 140 et 147 HV10, quelle que soit la génératrice basse (C1, C2, C7) ou haute (C5 et C6). Les valeurs maximales ont été relevées au niveau de la semelle (coupe C7).

	Nom Prénom	Nº carte	Date	Visa
Rédigé par	MONTALBETTI Michel	0102	18/04/2024	atte

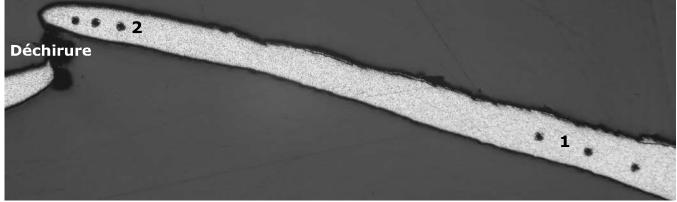
EXAMEN REALISE


Repère d'identification : PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 - Coupes C1, C3 et C4

Modalité d'essai : NF EN ISO 6507-1/2018


Identification machine SHIMADZU HMV2 N°I63034000628

d'essai:


Essai réalisé par : M. MONTALBETTI le 19/04/2024 à E3C Villepinte

COUPE C3 (à 15 mm de la dechirure)

COUPE C1

COUPE C4

RESULTATS

Repère coupe	Modalité	N° filiation	Localisation	Dureté	Dureté moyenne
C3		1	MB Tube 8"	137 - 135 - 136	136
C4	UV0 E	1	MB Tube 8"	158 - 157 - 159	158
C4	HV0,5	2	MB Tube 8"	180 - 183 - 195	186
C1		1	MB Tube 8"	139 – 138 – 144	140

COMMENTAIRE

Sur C3, le niveau de dureté HV0,5 relevé est comparable à celui de la coupe C1 (et proche de la moyenne HV10). Sur C4 (zone de propagation de la déchirure), la dureté augmente au fur et à mesure que l'on s'approche du bord rompu.

	Nom Prénom	N° carte	Date	Visa
Rédigé par	MONTALBETTI Michel	0102	18/04/2024	Att

ANNEXE G

ANALYSES CHIMIQUES

RAPPORT D'ESSAIS

TESTS REPORT

Essais réalisés par :

Tests performed by

INSTITUT DE SOUDURE INDUSTRIE - PEM VILLEPINTE

90, rue des Vanesses 93420 VILLEPINTE FRANCE

01.49.90.36.00

Destinataire :

MONTALBETTI. M

Repère Simplifié:

Short Mark

ligne PJR-L-

VPS018BC015

INSTITUT DE SOUDURE INDUSTRIE

ZI PARIS NORD 2 93420 VILLEPINTE 01.49.90.36.00

NOTES - NOTES

Les résultats ne concernent que l'objet soumis à essais, tel qu'il a été reçu. Les données relatives à l'échantillon (désignation spécifique, nuance, coulée, sens de laminage, etc.) sont celles transmises par le client au Laboratoire. La reproduction, ou l'intégration dans divers documents, de ce rapport n'est autorisé que sous forme de facsimilé intégral. Les essais réalisés sous couvert de l'accréditation du Laboratoire sont identifiés par la présence du logo COFRAC ESSAIS sur les fiches d'essais concernées. Le client du Laboratoire ne peut utiliser, à ses fins, la référence à l'accréditation COFRAC ESSAIS du Laboratoire.

The results relate only to the object tested, as received. The data relating to the sample (specific designation, grade, casting, rolling direction, etc.) are those transmitted by the customer to the Laboratory. The reproduction, or the integration in various documents, of this report is authorized only in the form of complete facsimile. The tests carried out under cover of the Laboratory's accreditation are identified by the presence of the COFRAC ESSAIS logo on the test sheets concerned. The Laboratory's customer may not use, for its own purposes, the reference to the Laboratory's COFRAC ESSAIS accreditation.

IDENTIFICATION ECHANTILLON - IDENTIFICATION MARK

Repère d'identification: Tube 8"

Mark

MB Tube

Welding type

Type Assemblage:

Dimensions (mm):

tube 8" ep 2 à 2,5 mm

Sizes

Nuance: ASTM A335 Grade P5

Graue

Provenance : Client

Origin

Usinage: En charge du laboratoire

Machining

Présence Demandeur : Non

Witnessed

Conservation Echantillon: Centre ISG

Sample storage

DOCUMENTS APPLICABLES - APPLICABLE DOCUMENTS

Référence 1 : ASTM A335 Grade P5

Standard 1

Standard 4

Référence 2: PI AC 117 REV 7

Standard 2
Référence 3: /
Standard 3
Référence 4: /

COMMENTAIRE - COMMENT

	Nom	Matricule / Carte nº	Date	Visa
Rédigé par	SAINSON ORIABELLE	Technicienne	15/04/2024	- Toda

ANALYSE CHIMIQUE

EXAMENS REALISES - EXAMINATION PERFORMED

CHEMICAL ANALYSIS

Repère d'identification: Tube 8" Analysé sur: METAL DE BASE

Identification MARK

RESULTATS - RESULTS

ELEMENTS	С	Mn	Si	Cr	Ni	Мо	S
Elements	Č	1,111	51	Ci	T VI	140	5
Résultats en %							
Results %	0,12	0,46	0,32	4,19	0,11	0,55	0,004
Incertitude élargie (k=2) %							
Expanded uncertainty (k=2) %	0,03	0,03	0,03	0,20	0,03	0,05	0,003
Code méthode	SEO / OES	SEO / OES	SEO / OES	SEO / OES	SEO / OES	SEO / OES	SEO / DES
Method code	3EO / OES	3EO / OE3	3EO / 0E3	SEO / OES	3EU / UE3	SEU / UES	SEO / OES
ELEMENTS	Р	Cu	Ti	Al	Nb	V	N
Elements		Cu	11	AI I	ND	ľ	l IV
Résultats en %							
Results %	0,010	0,14	<0,03	0,020	<0,03	<0,03	0,011
Incertitude élargie (k=2) %							
Expanded uncertainty (k=2) %	0,003	0,03		0,003			0,003
Code méthode	SEO / OES	SEO / OES	SEO / OES	SEO / OES trace	SEO / OES	SEO / OES	SEO / OES
Method code	3LO / OL3	3LO / OL3	3LO / OL3	SEO / DES trace	3LO / OL3	3LO / OL3	3LO / OL3
ELEMENTS	Fe						
Elements	16						
Résultats en %							
Results %	BASE						
Incertitude élargie (k=2) %							
Expanded uncertainty (k=2) %							
Code méthode	SEO / OES						
Method code	3LU / UES						

OBSERVATIONS

	Méthode et procédure/Method	Opérateur /Operator	Date
SEO / OES	Spectrométrie d'émission optique à l'arc / Optic Emission Spectromtry PI AC 0117 rev 7	Oriabelle SAINSON	15/04/2024
SEO / OES trace	Spectrométrie d'émission optique à l'arc trace / Optic Emission Spectromtry PI AC 0117 rev	Oriabelle SAINSON	15/04/2024

	Nom Prénom	Carte nº	Date	Visa
Rédigé par	SAINSON ORIABELLE		15/04/2024	- Todas

Institut de Soudure Industrie SASU Bobigny RCS 414 728 964 Siège Social : ZI Paris Nord 2 - 90 rue des Vanesses - BP 51362

- 95942 Roissy Charles De Gaulle Cedex

Tél. + 33 (0)1 49 90 36 00 - Fax + 33 (0)1 49 90 36 50 - www.isgroupe.com

MDT/ISI/405/2015/3/B N° GED 4677-7D8TA6-V1

Signature électronique si validé

L'utilisation des résultats des prestations de services vendues par Institut de Soudure Industrie, conformément à ses conditions générales de vente, est effectuée sous la propre responsabilité

du client. La reproduction partielle de ce rapport est strictement interdite, il ne peut être reproduit que dans son intégralité sans modification ni altération d'aucune sorte.

RAPPORT D'ESSAIS

TESTS REPORT

Essais réalisés par :

Tests performed by

INSTITUT DE SOUDURE INDUSTRIE - PEM VILLEPINTE

90, rue des Vanesses 93420 VILLEPINTE **FRANCE**

01.49.90.36.00

Destinataire:

M.MONTALBETTI

Repère Simplifié:

Short Mark

ligne PJR-L-

VPS018BC015

INSTITUT DE SOUDURE INDUSTRIE

ZI PARIS NORD 2 93420 VILLEPINTE 01.49.90.36.00

NOTES - NOTES

Les résultats ne concernent que l'objet soumis à essais, tel qu'il a été reçu. Les données relatives à l'échantillon (désignation spécifique, nuance, coulée, sens de laminage, etc.) sont celles transmises par le client au Laboratoire. La reproduction, ou l'intégration dans divers documents, de ce rapport n'est autorisé que sous forme de facsimilé intégral. Les essais réalisés sous couvert de l'accréditation du Laboratoire sont identifiés par la présence du logo COFRAC ESSAIS sur les fiches d'essais concernées. Le client du Laboratoire ne peut utiliser, à ses fins, la référence à l'accréditation COFRAC ESSAIS du Laboratoire.

The results relate only to the object tested, as received. The data relating to the sample (specific designation, grade, casting, rolling direction, etc.) are those transmitted by the customer to the Laboratory. The reproduction, or the integration in various documents, of this report is authorized only in the form of complete facsimile. The tests carried out under cover of the Laboratory's accreditation are identified by the presence of the COFRAC ESSAIS logo on the test sheets concerned. The Laboratory's customer may not use, for its own purposes, the reference to the Laboratory's COFRAC ESSAIS accreditation.

IDENTIFICATION ECHANTILLON - IDENTIFICATION MARK

Soudure Té / Tube 8" Repère d'identification :

Mark

Tube bout à bout

Welding type

Type Assemblage:

Dimensions (mm): ligne 8" dim 36x25

Sizes

Nuance: E CrMo5 B 4 2 H5 Grade

Provenance: Client Origin

Usinage: En charge du laboratoire

Machinina

Présence Demandeur :

Witnessed

Conservation Echantillon:

Sample storage

DOCUMENTS APPLICABLE DOCUMENTS

Référence 1 : EN 1599/1997

Standard 1

Standard 4

Référence 2 : PI AC 0117 REV 7

Standard 2 Référence 3 : Standard 3 Référence 4:

COMMENTAIRE - COMMENT

	Nom	Matricule / Carte nº	Date	Visa
Rédigé par	MOMIROVIC DEJAN		16/04/2024	HOMIROVIC

ANALYSE CHIMIQUE

EXAMENS REALISES - EXAMINATION PERFORMED

CHEMICAL ANALYSIS

Repère d'identification: Soudure Té/Tube 8" Analysé sur: METAL FONDU

Identification MARK

RESULTATS - RESULTS

ELEMENTS	С	Mn	Si	Cr	Ni	Mo	S
Elements)	1 11 1	5.	Çi	141	110	J
Résultats en %							
Results %	0,090	0,66	0,29	5,09	0,26	0,57	0,009
Incertitude élargie (k=2) %							
Expanded uncertainty (k=2) %	0,005	0,05	0,03	0,20	0,03	0,05	0,003
Code méthode	SEO / OES	SEO / OES	SEO / OES	SEO / OES	SEO / OES	SEO / OES	SEO / OES
Method code	SEO / OES	3E0 / 0E3	SEO / OES	3EU / UE3	3EO / OE3	3EU / UE3	3EU / UE3
ELEMENTS	Р	Cu	l AI	Nb	Ti	V	l _N
Elements	Г	Cu	Ai	NID	11	V	IN
Résultats en %							
Results %	0,013	0,05	0,006	0,004	<0,03	<0,03	0,011
Incertitude élargie (k=2) %							
Expanded uncertainty (k=2) %	0,003	0,03	0,003	0,003			0,003
Code méthode	SEO / OES	SEO / OES	SEO / OES trace	SEO / OES twose	SEO / OES	SEO / OES	SEO / OES
Method code	SEO / OES	350 / 053	SEO / OES trace	SEO / OES trace	3EO / OE3	3EO / OE3	3EO / OE3
ELEMENTS	Fe						
Elements	10						
Résultats en %							
Results %	BASE						
Incertitude élargie (k=2) %		_			_		
Expanded uncertainty (k=2) %							
Code méthode	SEO / OES						
Method code	SEU / UES						

OBSERVATIONS

	Méthode et procédure/Method	Opérateur /Operator	Date
SEO / OES	Spectrométrie d'émission optique à l'arc / Optic Emission Spectromtry PI AC 0117 rev 7	MOMIROVIC Dejan	16/04/2024
SEO / OES trace	Spectrométrie d'émission optique à l'arc trace / Optic Emission Spectromtry PI AC 0117 rev	MOMIROVIC Dejan	16/04/2024

	Nom Prénom	Carte nº	Date	Visa
Rédigé par	MOMIROVIC DEJAN		16/04/2024	HOMIROVIC

Institut de Soudure Industrie SASU Bobigny RCS 414 728 964 Siège Social : ZI Paris Nord 2 - 90 rue des Vanesses - BP 51362

- 95942 Roissy Charles De Gaulle Cedex

Tél. + 33 (0)1 49 90 36 00 - Fax + 33 (0)1 49 90 36 50 - www.isgroupe.com

MDT/ISI/405/2015/3/B N° GED 5944-7DGU6T-V1

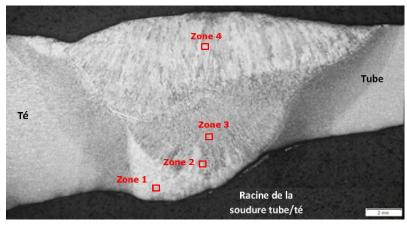
Signature électronique si validé

L'utilisation des résultats des prestations de services vendues par Institut de Soudure Industrie, conformément à ses conditions générales de vente, est effectuée sous la propre responsabilité

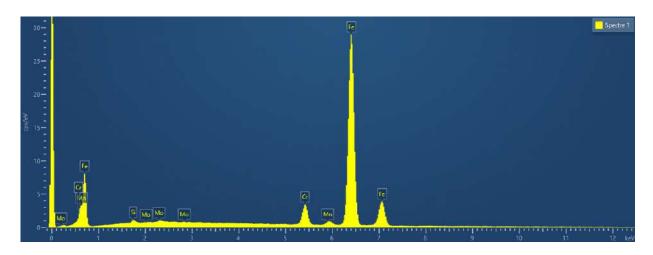
du client. La reproduction partielle de ce rapport est strictement interdite, il ne peut être reproduit que dans son intégralité sans modification ni altération d'aucune sorte.

ANNEXE H

MICROANALYSES EDS EN METAL FONDU DE LA SOUDURE TUBE / TE


MICROANALYSES EDS

MICROANALYSES DU METAL FONDU DE LA SOUDURE TUBE/TE SUR COUPE METALLOGRAPHIQUE C5 - LIGNE PJR-L-VPS018BC015


Conditions d'analyse

Tension d'accélération (kV):	20.0
Courant du faisceau (nA):	5
Temps de comptage (s):	30
Temps mort de détection(%):	35

Coupe C5 – Localisation des zones de microanalyses dans la soudure tube 8" / té

SPECTRE DES RAIES D'ENERGIE DES ÉLÉMENTS DÉTECTÉS

TABLEAU RÉCAPITULATIF DES ANALYSES SEMI-QUANTITATIVES (à titre indicatif) Résultats en % massique

Spectre	%Fe	%Cr	%Mn	%Mo	%Si
Zone 1 (passe TIG)	93,02	5,55	0,57	0,46	0,41
Zone 2 (passe EE)	92,99	5,32	0,89	0,42	0,38
Zone 3 (passe EE)	92,94	5,22	0,85	0,67	0,31
Zone 4 (passe EE)	92,9	5,36	0,83	0,61	0,3

Nota: Méthodes d'analyse ne permettant pas la détection des éléments dont le numéro atomique est inférieur à 4 (Béryllium)

	Nom	Date	Signature
Rédigé par	A. LE GUELLAUT	17/04/2024	一

ANNEXE I

ESSAIS MECANIQUES

PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015 **EPROUVETTES D'ESSAIS DE TRACTION USINEES EN PARTIE BASSE DU TUBE 8"**

FIGURE 1 VUE D'ENSEMBLE COTE EXTERNE DU TUBE

FIGURE 2 VUE D'ENSEMBLE COTE INTERNE DU TUBE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	25/04/2024	Atte

RAPPORT D'ESSAIS

TESTS REPORT

Essais réalisés par :

Tests performed by

INSTITUT DE SOUDURE INDUSTRIE - PEM VILLEPINTE

90, rue des Vanesses 93420 VILLEPINTE FRANCE Destinataire : M.MC

M.MONTALBETTI

Repère Simplifié: ligne PJR-L-

VPS018BC015

INSTITUT DE SOUDURE INDUSTRIE

ZI PARIS NORD 2 93420 VILLEPINTE

NOTES - NOTES

01.49.90.36.00

Les résultats ne concernent que l'objet soumis à essais, tel qu'il a été reçu. Les données relatives à l'échantillon (désignation spécifique, nuance, coulée, sens de laminage...) sont celles transmises par le client au Laboratoire. La reproduction, ou l'intégration dans divers documents, de ce rapport n'est autorisé que sous forme de facsimilé intégral. Les essais réalisés sous couvert de l'accréditation du Laboratoire sont identifiés par la marque d'accréditation COFRAC ESSAIS sur les fiches d'essais concernées. Le client du Laboratoire ne peut utiliser, à ses fins, la référence à l'accréditation COFRAC ESSAIS du Laboratoire.

The results only relate the object tested, as received. The data relating to the sample (specific identification, grade, heat, casting, rolling direction, ...) are those transmitted by the customer to the Laboratory. The copy or integration into various documents, of this report is authorized only in the form of a full copy. The tests performed under Laboratory's accreditation are identified by the COFRAC ESSAIS accreditation mark on the relevant test reports. The client of the Laboratory may not use, for its own purposes, the reference to the Laboratory's COFRAC ESSAIS accreditation.

IDENTIFICATION ECHANTILLON - IDENTIFICATION MARK

Repère d'identification : Tube 8"

Mark

Type Assemblage: MB Tube

Welding type

Dimensions (mm): tube 8" ep 2 à 2,5 mm

Sizes

Nuance: ASTM A335 Grade P5

Grade

Provenance : Client

Origin

Usinage: En charge du laboratoire

Machining

Présence Demandeur : Non

Witnessed

Conservation Echantillon: Centre ISG

Sample storage

DOCUMENTS APPLICABLES - APPLICABLE DOCUMENTS

Référence 1 : ASTM A335 Grade P5

Standard 1
Référence 2:
Standard 2
Référence 3:
Standard 3
Référence 4:
Standard 4

COMMENTAIRE - COMMENT

	Nom	Matricule / Carte nº	Date	Visa
Rédigé par	YANG BEE		29/04/2024	25

ESSAIS DE TRACTION

TENSILE TESTS

EXAMEN REALISE - EXAMINATION PERFORMED

Repère d'identification : Tube 8" Sous la semelle

Identification mark

Modalité d'essai : ASTM A 370 / 2023

Testing procedure

ASTM A 370 / 2023

Identification machine d'essai : ZWICK 1494 nº 107304

Identification of testing apparatus

Essai réalisé en présence de : /

Test witnessed by

Essai réalisé par : Bee YANG le 29/04/2024 à PEM Villepinte

Test performed by

DEFINITION EPROUVETTE - SPECIMEN DEFINITION

Définition du produit : Tube Non soudé
Product definition Pipe Unwelded

Repère éprouvette	Localisation de l'essai	Forme	Sens	Position/Epaisseur
Identification mark	Specimen location	Shape	Axis	Location/Thickness
Tube 8" Sous la semelle	Essai en métal de base Base metal test	Prismatique Flat	Long	

RESULTATS D'ESSAIS - TESTS RESULTS

Localisation de l'essai : Essai en métal de base

Specimen location Base metal test

Repère	θ	Dimensions ^{Sizes}	S ₀	Lo	Rp _{0,2 %} YS 0,2%	R _m TS	A Elong
éprouvette Identification Mark	°C	mm	mm²	mm	N/mm²	N/mm²	%
Tube 8" Sous la semelle	21	12,53 x 2,15	26,94	50	262	484	28,6

COMMENTAIRES - NOTES

	Nom	Date	Visa
Rédigé par	YANG BEE	29/04/2024	St

ESSAIS DE FLEXION PAR CHOC

IMPACT TESTS

EXAMEN REALISE - EXAMINATION PERFORMED

Repère d'identification: Tube 8" Sous la semelle

Identification mark Modalité d'essai : ASTM A370 / 2023

Testing procedure

Identification machine d'essai: HOYTOM 300J n°07P6911 - KV8

Identification of testing apparatus

Essai réalisé en présence de :

Test witnessed by

Essai réalisé par : Bee YANG le 26/04/2024 à PEM Villepinte

Test performed by

DEFINITION EPROUVETTE – SPECIMEN DEFINITION

Définition du produit : Tube Non soudé Product definition Unwelded Pipe

Repère éprouvette Identification mark	Sens de prélèvement	Type d'entaille	Orientation de l'entaille Orientation of notch	Position/Epaisseur Location/Thickness
1 à 3	Long Long	KV	Perpendiculaire à la peau – Perpendicular to the surface	Sous la semelle

RESULTATS D'ESSAIS - TESTS RESULTS

Essai en métal de base Localisation de l'essai :

Specimen location Base metal test

Repère éprouvette Identification mark	Θ _V	Dimension à fond d'entaille Size of the root of the notch mm	Energie absorbée ^{Absorbed} energy J	Expansion latérale ^{Lateral expansion} mm	Cisaillement Shear fracture %	Observations Remarks
1 à 3	21	2,5 x 8	36,1 35,3 34,8	/	/	

Selon NF EN ISO 148-1, toute valeur d'énergle absorbée supérieure à 240J est considérée comme approximative.

According to NF EN ISO 148-1, any value higher than 240J is considered as approximative.

Pour les essais sulvant ASTM et sulvant les résultats de l'étalonnage 2024, toute valeur d'énergle absorbée supérleure à 172J est considérée comme approximative.

For the tests following ASTM and according to the results of the verification in 2024, any value higher than 1721 is considered as approximative.

	Nom	Date	Visa
Rédigé par	YANG BEE	29/04/2024	St

ANNEXE J

EXAMEN FRACTOGRAPHIQUE

FIGURE 1
VUE D'ENSEMBLE COTE SURFACE EXTERNE

FIGURE 2
VUE D'ENSEMBLE COTE SURFACE INTERNE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	22/04/2024	Att

EXAMEN FRACTOGRAPHIQUE

FIGURE 3
DETAIL 1 DE LA FIGURE 2

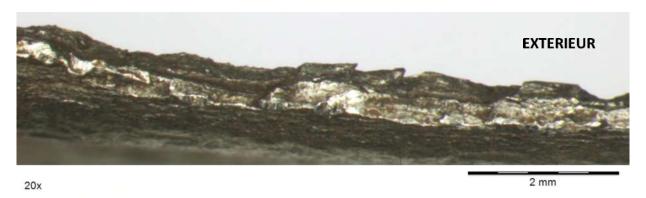


FIGURE 4
DETAIL DE LA FIGURE 3



FIGURE 5
DETAIL 2 DE LA FIGURE 2

FIGURE 6
DETAIL DE LA FIGURE 5

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	22/04/2024	Att

EXAMEN FRACTOGRAPHIQUE

FIGURE 7
DETAIL 3 DE LA FIGURE 2

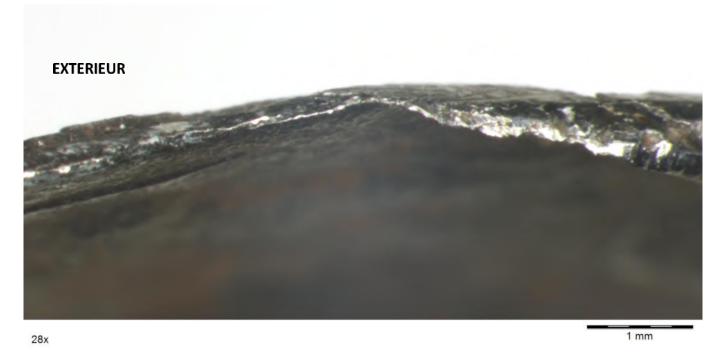


FIGURE 8
DETAIL DE LA FIGURE 8

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	22/04/2024	dite

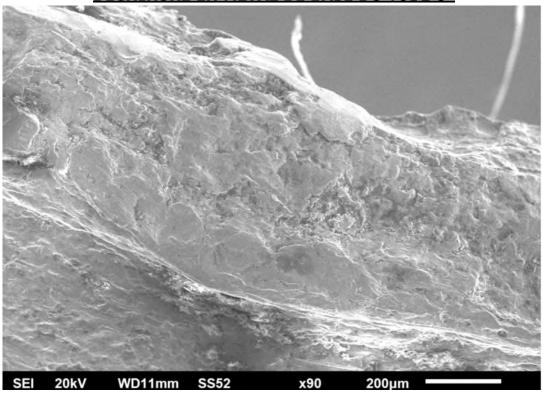


FIGURE 9
DETAIL DU FACIES DE LA DECHIRURE

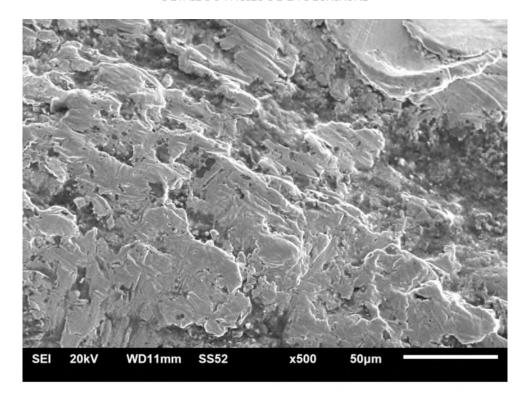


FIGURE 10 DETAIL DE LA FIGURE 9

	Nom	Date	Signature
Rédigé par	LE GUELLAUT	22/04/2024	

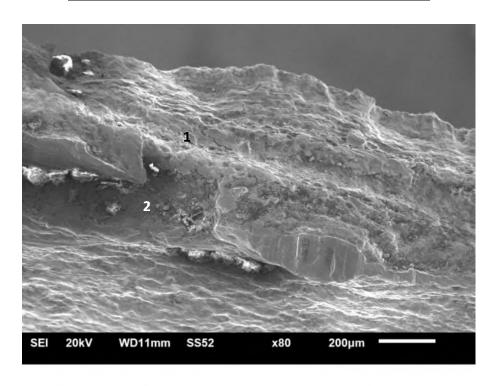


FIGURE 11
AUTRE DETAIL DU FACIES DE LA DECHIRURE

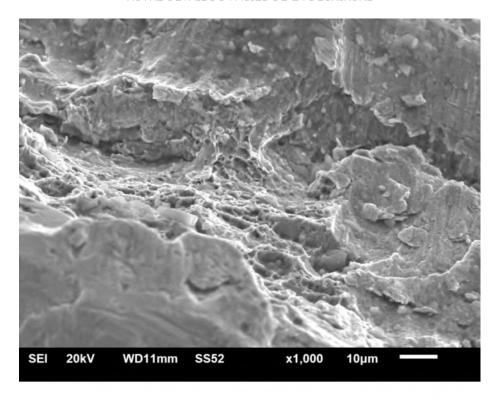


FIGURE 12 DETAIL 1 DE LA FIGURE 11

	Nom	Date	Signature
Rédigé par	A. LE GUELLAUT	22/04/2024	

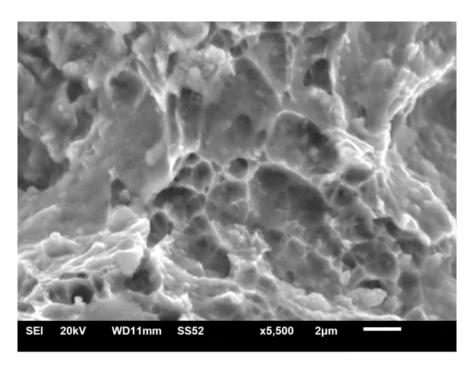


FIGURE 13 DETAIL DE LA FIGURE 12 RUPTURE DUCTILE

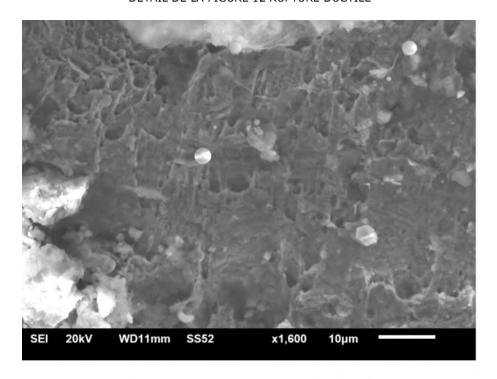


FIGURE 14 DETAIL 2 DE LA FIGURE 11 RUPTURE DUCTILE / DEFORMATION

	Nom	Date	Signature
Rédigé par	A. LE GUELLAUT	22/04/2024	

ANNEXE K

MICROANALYSES EDS DU DEPOT ET LA COUCHE INTERNES

FIGURE 1
VUE D'ENSEMBLE DU RECIPIENT CONTENANT LE DEPOT

FIGURE 2
VUE DU DEPOT APRES UNE PREMIERE DECANTATION

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	ANT

FIGURE 3
DETAIL 1 DE LA FIGURE 2 EAU SEPAREE DU DEPOT

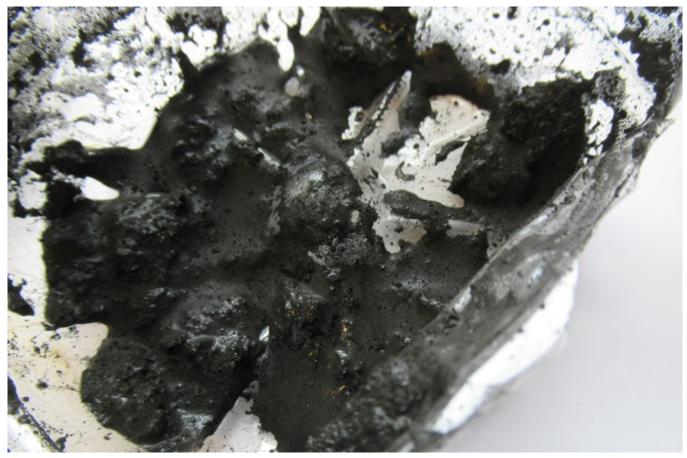


FIGURE 4
DETAIL 2 DE LA FIGURE 2 DEPOT HUMIDE AU FOND DU RECIPIENT

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	att

FIGURE 5
RECUPERATION DE LA GRANDE MAJORITE DU DEPOT

FIGURE 6
DEPOT AVANT SECHAGE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	ANTE

FIGURE 7
SECHAGE DU DEPOT (PENDANT 3 HEURES SUR PLAQUE CHAUFFANTE A 50°C)

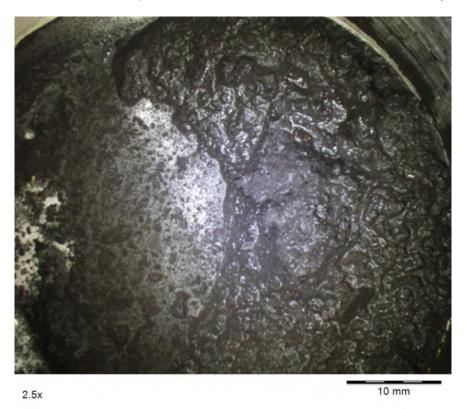


FIGURE 8
DEPOT EN COURS DE SECHAGE

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	ALT.

DEPOT INTERNE TRANSMIS AVEC LE PRELEVEMENT DE LIGNE 8" PJR-L-VPS018BC015

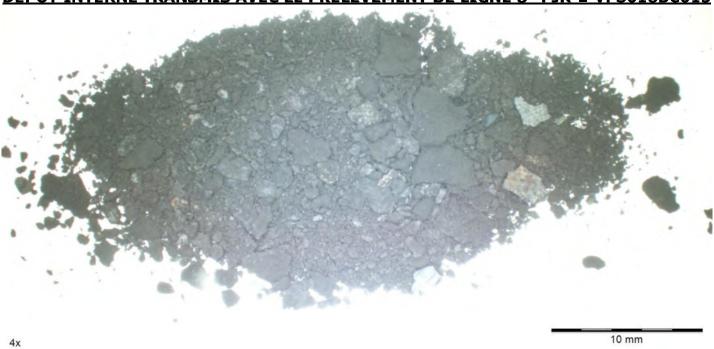
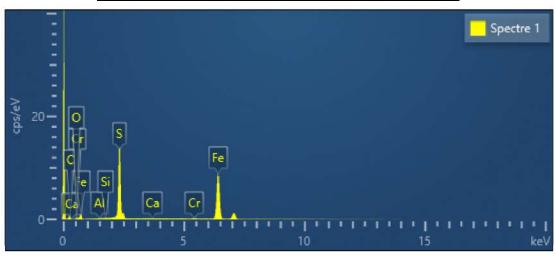


FIGURE 9
PARTIE DU DEPOT SEC ANALYSEE PAR POINTES EDS

FIGURE 10
PARTIE DU DEPOT SEC ANALYSEE PAR DRX

	Nom	Date	Signature
Rédigé par	M. MONTALBETTI	16/04/2024	ANTE

5/9


ANALYSE ÉLÉMENTAIRE MICROANALYSES EDS

MICROANALYSES AU DROIT DU DEPOT PRELEVE A L'INTERIEUR DE LA LIGNE PJR-L-VPS018BC015

Conditions d'analyse

Tension d'accélération (kV):	20.0
Courant du faisceau (nA):	5
Temps de comptage (s):	30
Temps mort de détection(%):	35

SPECTRE DES RAIES D'ENERGIE DES ÉLÉMENTS DÉTECTÉS

TABLEAU RÉCAPITULATIF DES ANALYSES SEMI-QUANTITATIVES (à titre indicatif)

Résultats en % massique

Label (nom)	C	0	Al	Si	S	Са	Cr	Fe	Total
Spectre 1	19,2	1,6	0,0	0,0	22,3	0,0	0,4	56,6	100,0
Spectre 2	32,7	2,1	0,0	0,0	22,1	0,0	0,2	43,0	100,0
Spectre 3	24,3	2,2	0,0	0,1	23,6	0,0	1,8	48,0	100,0
Spectre 4	33,9	2,1	0,1	0,1	22,6	0,1	0,0	41,1	100,0
Spectre 5	34,9	1,2	0,0	0,0	21,3	0,0	1,0	41,6	100,0
Spectre 6	24,0	1,3	0,2	0,1	19,8	0,1	0,5	54,0	100,0
Spectre 7	36,5	1,0	0,0	0,0	20,9	0,0	0,5	41,2	100,0
Spectre 8	32,0	1,6	0,0	0,1	22,1	0,0	0,7	43,6	100,0
Spectre 9	33,8	1,5	0,0	0,1	21,2	0,0	1,0	42,3	100,0
Spectre 10	31,2	2,3	0,1	0,1	19,0	0,0	1,0	46,3	100,0
Moyenne	30,3	1,7	0,0	0,1	21,5	0,0	0,7	45,8	100,0

Nota : Méthodes d'analyse ne permettant pas la détection des éléments dont le numéro atomique est inférieur à 4 (Béryllium)

	Nom	Date	Visa
Rédigé par	D. LE DU	03/04/2024	lobbe .

MICROANALYSES AU DROIT DE LA COUPE METALLOGRAPHIQUE C1 EN SURFACE INTERNE DE LA LIGNE PJR-L-VPS018BC015

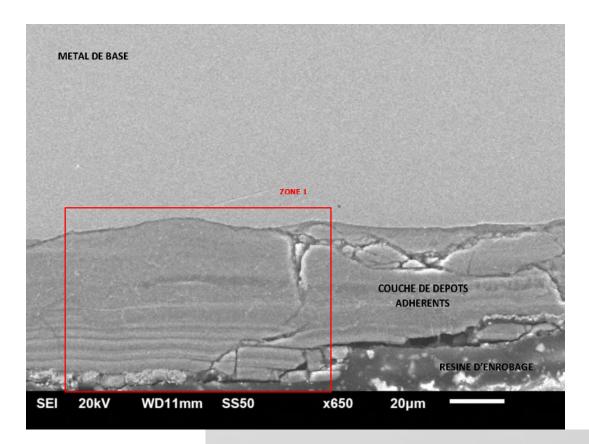


FIGURE 1
ZONE D'ANALYSE
OBSERVEE AU MEB EN
MODE ELECTRONS
SECONDAIRES

FIGURE 2
ZONE D'ANALYSE
OBSERVEE AU MEB EN
MODE ELECTRONS
RETRODIFFUSES

	Nom	Date	Signature
Rédigé par	D. LE DU	05/04/2024	lika ·

MICROANALYSES EDS/WDS

CARTOGRAPHIE ELEMENTAIRE RX AU DROIT DE LA COUCHE DE DEPOTS EN SURFACE INTERNE DE LA COUPE C1 - LIGNE PJR-L-VPS018BC015

Conditions d'analyse

Tension d'accélération (kV):	20.0
Courant du faisceau (nA):	5
Temps mort de détection(%):	35

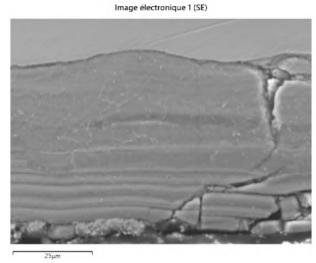


Figure 3 : Zone 1 vue en mode électrons secondaires

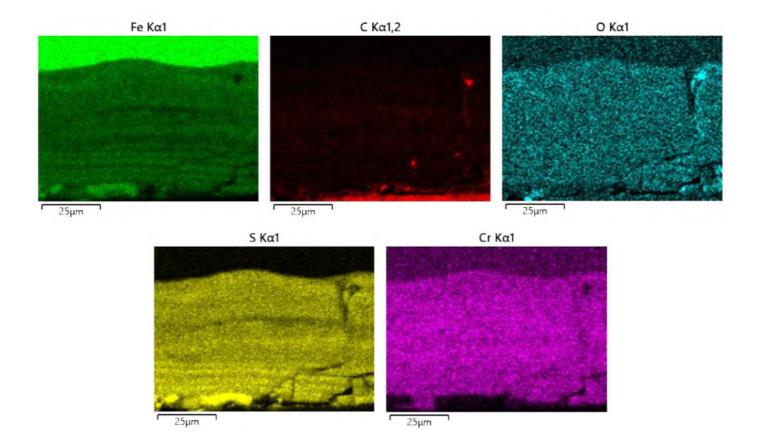


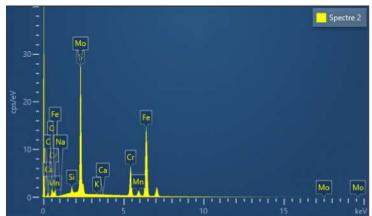
Figure 4 : Cartographie X par élément de la figure 3

	Nom	Date	Signature	
Rédigé par	D. LE DU	05/04/2024	Ethi ·	

MICROANALYSES EDS/WDS

MICROANALYSES AU DROIT DE LA COUPE METALLOGRAPHIQUE C1 COUCHE DE DEPOTS EN SURFACE INTERNE DE LA COUPE C1 - LIGNE PJR-L-VPS018BC015

Conditions d'analyse


Tension d'accélération (kV):	20.0
Courant du faisceau (nA):	5
Temps de comptage (s):	30
Temps mort de détection(%):	35

Spectre 1 Spectre 2 Spectre 3 Spectre 4 Spectre 5 Spectre 6 Spectre 7 Spectre 8 +Spectre 9 +Spectre 10 +Spectre 10 +Spectre 12 +Spectre 13 +Spectre 13 +Spectre 13 +Spectre 14 +Spectre 14

Image électronique 2 (SE)

Figure 5 : Zone 1 vue en mode électrons secondaires Localisation des pointés de microanalyses

SPECTRE DES RAIES D'ENERGIE DES ÉLÉMENTS DÉTECTÉS

TABLEAU RÉCAPITULATIF DES ANALYSES SEMI-QUANTITATIVES (à titre indicatif) Résultats en % massique

Label (nom)	С	0	Na	Si	S	K	Са	Cr	Mn	Fe	Мо	Total
Spectre 1	0,2	0,2	0,0	0,3	0,0	0,0	0,1	4,2	0,5	94,1	0,5	100,0
Spectre 2	7,8	6,2	0,0	1,0	20,6	0,0	0,0	12,7	1,1	47,1	3,6	100,0
Spectre 3	10,4	6,3	0,3	1,1	19,5	0,0	0,0	13,4	1,4	44,2	3,4	100,0
Spectre 4	11,9	7,3	0,2	1,4	17,9	0,0	0,0	16,1	1,3	39,5	4,3	100,0
Spectre 5	15,4	6,7	0,3	1,2	16,0	0,0	0,0	19,8	1,3	36,2	3,2	100,0
Spectre 6	18,4	6,7	0,2	1,4	17,5	0,0	0,0	16,9	1,6	34,3	3,0	100,0
Spectre 7	13,3	5,7	0,3	1,2	19,1	0,0	0,0	17,0	1,5	38,3	3,6	100,0
Spectre 8	19,1	6,8	0,3	1,5	18,1	0,0	0,1	18,4	1,6	30,4	3,8	100,0
Spectre 9	14,5	6,4	0,3	1,3	19,5	0,0	0,0	16,5	1,4	36,7	3,5	100,0
Spectre 10	12,4	5,6	0,3	1,2	21,6	0,0	0,0	15,3	1,2	39,1	3,3	100,0
Spectre 11	15,2	5,8	0,4	1,4	20,1	0,0	0,2	16,9	1,3	34,5	4,3	100,0
Spectre 12	15,2	4,7	0,3	1,2	22,6	0,0	0,2	13,7	1,1	37,5	3,7	100,0
Spectre 13	12,9	5,0	0,5	1,1	21,6	0,0	0,2	15,4	1,2	37,7	4,6	100,0
Spectre 14	19,1	1,0	0,0	0,0	26,8	0,0	0,2	0,9	0,2	49,4	2,4	100,0
Spectre 15	18,8	7,2	0,6	1,2	21,0	0,1	0,3	13,5	1,1	32,7	3,5	100,0

Nota: Méthodes d'analyse ne permettant pas la détection des éléments dont le numéro atomique est inférieur à 4 (Béryllium)

	Nom	Date	Signature
Rédigé par	D. LE DU	05/04/2024	Little .

ANNEXE L

ANALYSE PAR DRX DU DEPOT INTERNE

SOCIÉTÉ FRANÇAISE DE CÉRAMIQUE CENTRE TECHNIQUE INDUSTRIEL DE LA CÉRAMIQUE

ASSOCIATION SCIENTIFIQUE ET TECHNIQUE RECONNUE D'UTILITE PUBLIQUE PAR DECRET DU 2 JANVIER 1930 6-8, RUE DE LA REUNION - LES ULIS - 91955 COURTABOEUF CEDEX - TEL : 01 56 56 70 00

E-mail: soc.fr.ceram@ceramique.fr - http://www.ceramique.fr

V / Réf.: Cde n° CFF-24-ISI02890

N / Réf.: 12166

Date de réception des échantillons : 10/04/2024 Date de réalisation de l'essai : 15-17/04/2024 INSTITUT DE SOUDURE INDUSTRIE
M. MONTALBETTI / A. LE GUELLAUT /

D. LEDU

ZI Paris Nord 2

90, rue des Vanesses 93420 VILLEPINTE

RAPPORT D'ESSAI N° XM2400861

NATURE DE L'ESSAI ANALYSE QUALITATIVE PAR DIFFRACTION DES RAYONS X

N° SFC: DESIGNATION ECHANTILLON

46514 Dépôt interne ligne PJR-L-VPS018BC015

APPAREILLAGE:

D8 ADVANCE BRUKER (DAVINCI)
Tube céramique, filtre nickel

Tension et intensité du générateur : 40 kV - 40 mA

Géométrie Bragg - Brentano 9/9

Détecteur ultra rapide LynxEye (Ouverture $2\theta = 3.0^{\circ}$)

Logiciel d'analyse : EVA V4

CONDITIONS OPÉRATOIRES:

Acquisition de 8 à 70 °20

Type : complexe

PRÉPARATION DE L'ÉCHANTILLON:

Froyage vibro-broyeur WC + tamisage 40 μm selon procédure interne

Sans préparation

Autre :

MÉTHODE EMPLOYÉE:

Procédure interne

À Courtabœuf, le 17 avril 2024 La Responsable Analytique - Pôle Microstructure Camille HERVY La Responsable du département LC2M Sophie AUCLERC La Responsable Analytique P.O. Camille HERVY

Ce rapport comporte 3 pages

RESULTATS

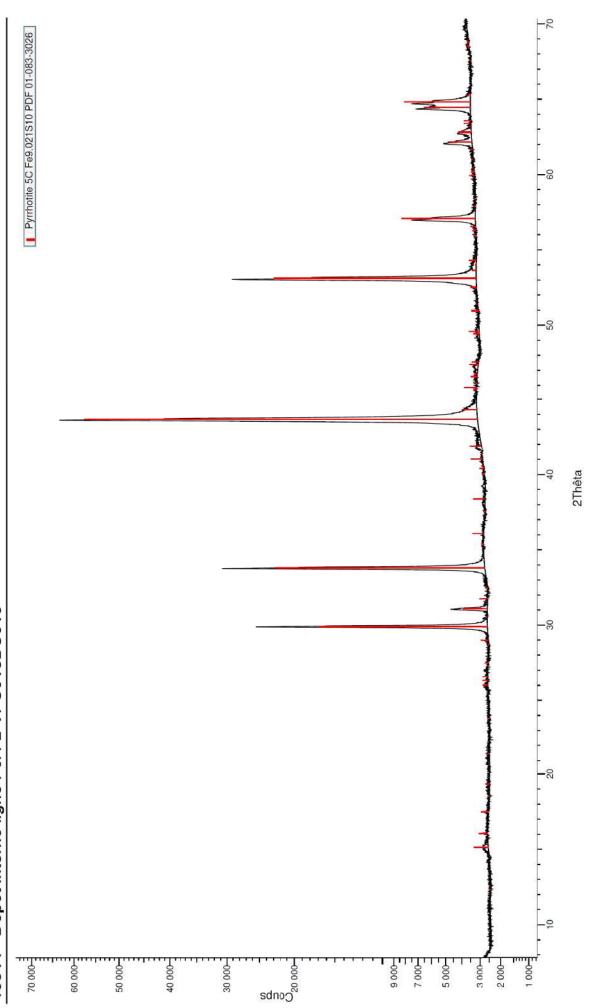
1. PHASES IDENTIFIEES

La forme exacte peut dans certains cas être incertaine, voir § 2 le cas échéant.

46514
Dépôt interne ligne PJR-L-VPS018BC015
+
Tr

2. PHASES DONT LA PRESENCE EST SUPPOSEE

Le nombre de pics caractéristiques associés peut être insuffisant ou la quantité présente non significative.


Néant

Légende : - Non déce**l**é

- Présence

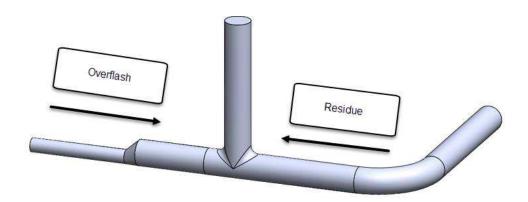
Tr Présence en traces

46514 - Dépôt interne ligne PJR-L-VPS018BC015

- Fin de rapport d'essai -

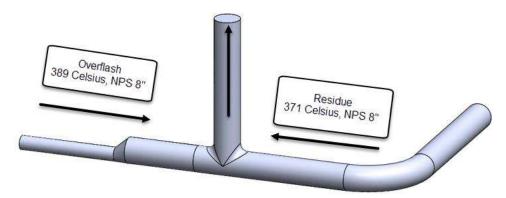
Rapport d'enquête sur l'incendie survenu au sein de la raffinerie exploitée par Esso Raffinage à Port-Jérôme-sur-Seine (76) le 11 mars 2024

Annexe 2 Gravenchon Computational Fluid Dynamics analysis

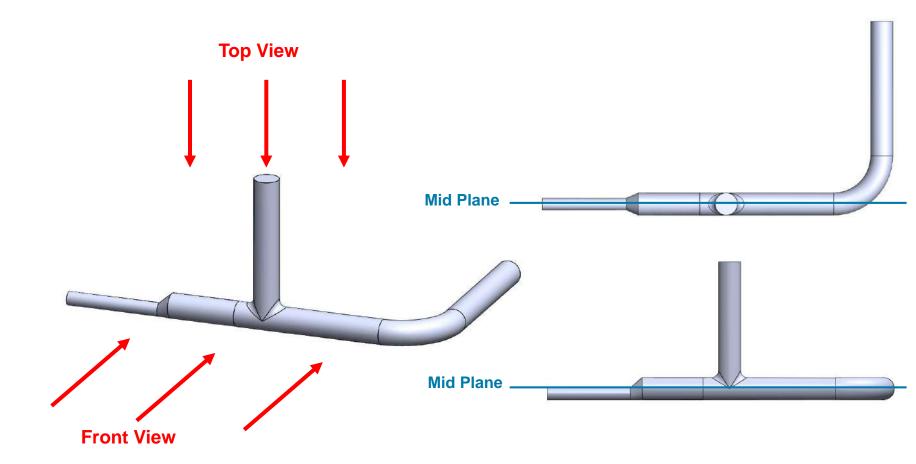


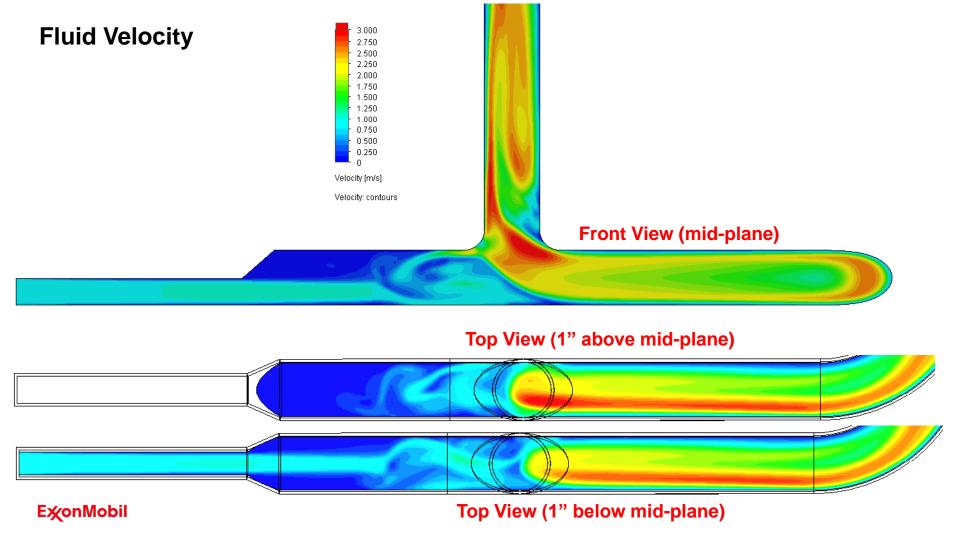
June 25th 2024,

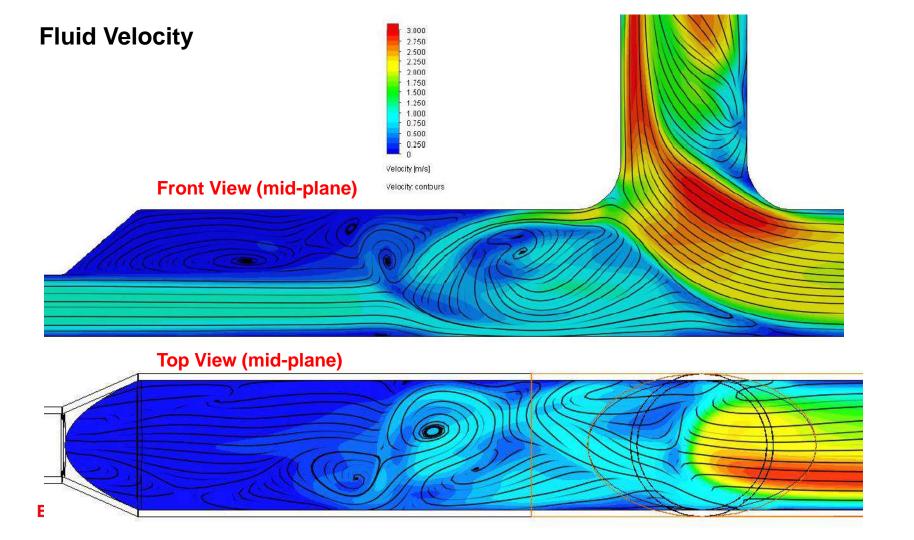
Gravenchon Computational Fluid Dynamics analysis

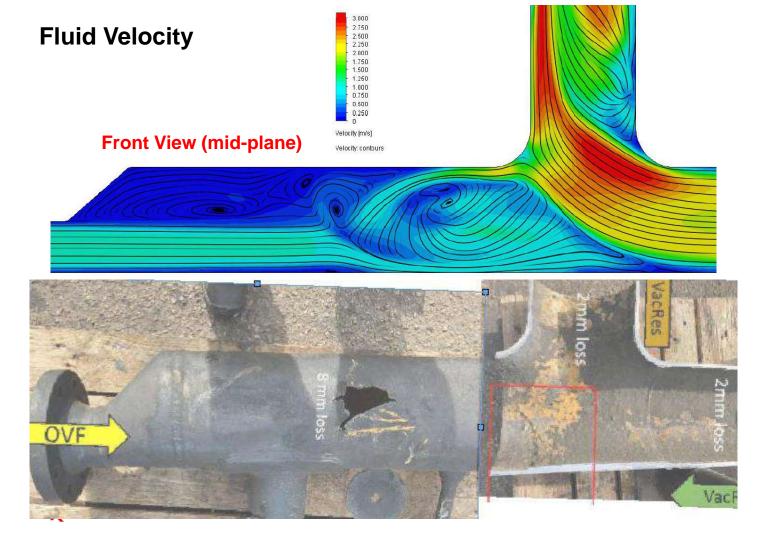

Objective

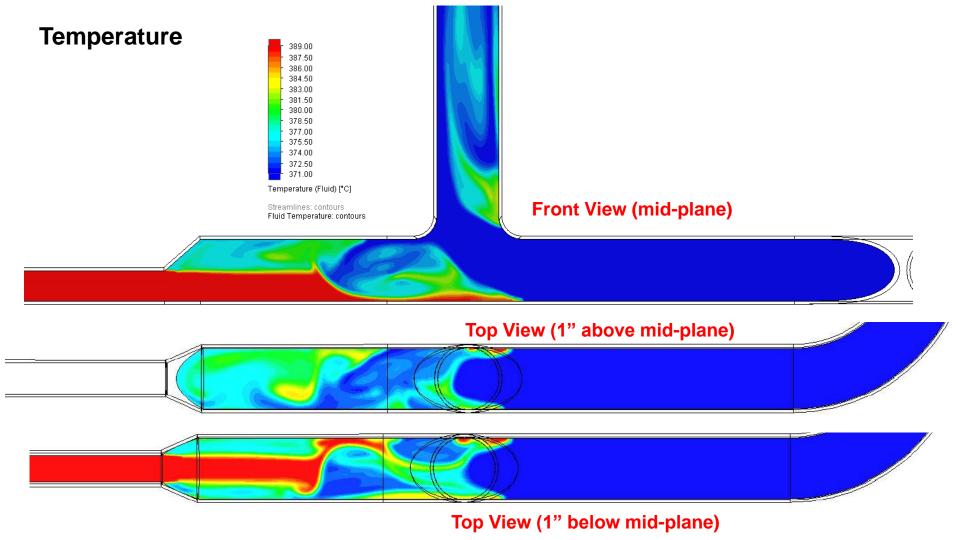
- This PowerPoint summarize the results of the CFD analysis performed on the failed piping section of the VPS tower.
- The objective of the CFD analysis is to explain the increased corrosion rate observed in the failed pipe with a single phase flow analysis.
- The streams are described below

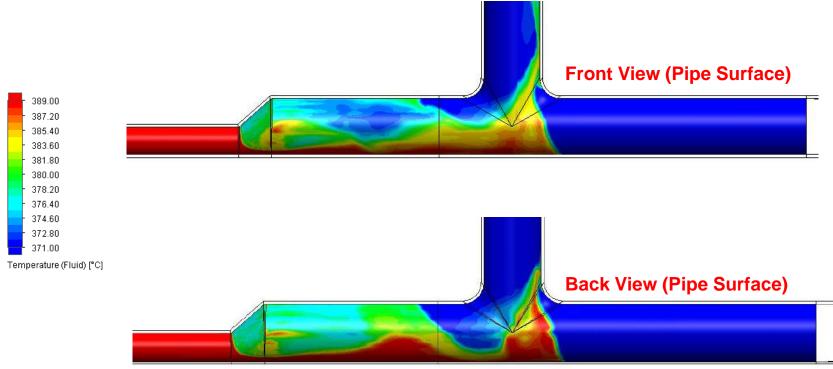

Assumptions / Technical Information

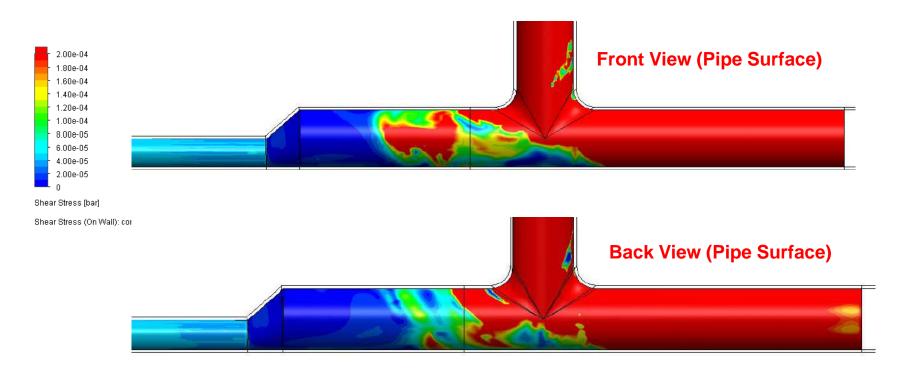

- The following assumptions and technical information were included in this analysis
 - There is no steam in the fluids
 - The general metal loss observed in the failed section does not suggest a dual phase flow in that pipe section
 - The CFD model will be designed to simulate the failed section (before and after). There is no other simulation to take place elsewhere in the system.

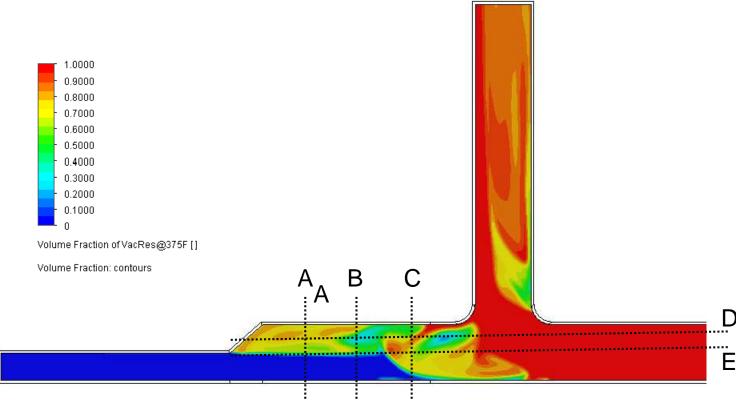



Conclusions

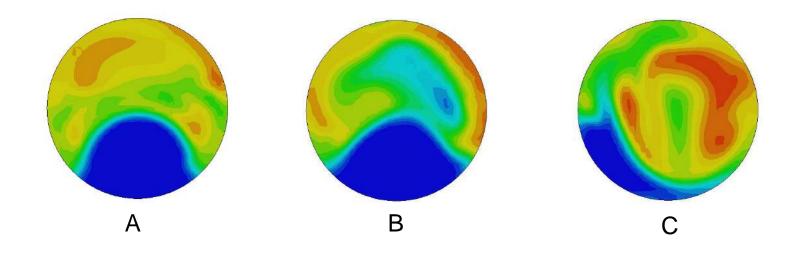

- The current analysis done does not demonstrate significant correlation between the velocity as well as the shear stress with the damaged observed.
- The majority of particles have a residence time of 5 seconds and less, and therefore the residence time was not a factor in the observed general metal loss in this section.
- The simulation demonstrate that the temperature profile of the overflash is higher than the residue. Current theories suggest that the corrosion rate increases with temperature. The measurement shows a generalized loss of thickness in the overflash pipe section.



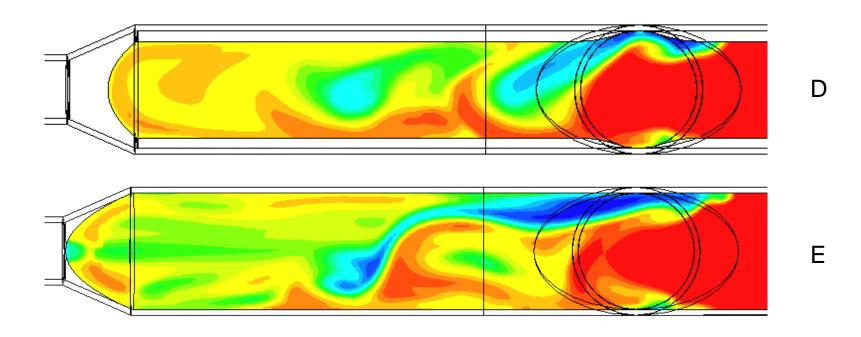



E**x**onMobil

Fluid Shear Stress


E**x**onMobil

Volume Fraction of VacRes Fluid



Volume Fraction of VacRes Fluid

Volume Fraction of VacRes Fluid

60.000 OVF 1000 points) 56.000 52.000 48.000 44.000 40.000 36.000 Count of Number of 32.000 **Particles** Row Labels 28.000 0 - 5 sec 862 24.000 84 5 - 10 sec 20.000 10 - 30 sec 16.000 30 - 60 sec 12.000 8.000 60 - 90 sec 4.000 **Grand Total** 1000 Trajectory Time [s] Injection 1 Injection 1 Injection 1 Injection 1 Injection 1

Eχ

Bureau d'enquêtes et d'Analyses sur les Risques Industriels

MTECT / IGEDD / BEA-RI Tour Séquoïa 92055 La Défense Cedex

+33 1 40 81 21 22 bea-ri.igedd@developpement-durable.gouv.fr

https://www.igedd.developpement-durable.gouv.fr/bea-ri-r549.html