Comment l’IA prévient les incidents dans les ports maritimes ?
L’intelligence artificielle devrait rapidement jouer un rôle prépondérant en matière de prévention des risques. Cela est déjà le cas dans certains secteurs d’activités. Qu’en est-il concernant la sécurité et la sûreté en milieu portuaire ? Comment l’IA peut-elle prévenir les incidents dans les ports maritimes ? Éléments de réponse.
IA : l’enjeu de digitalisation des ports maritimes
Les ports maritimes sont un véritable carrefour du commerce international dont l’infrastructure et les process sont en constante évolution afin d’assurer une compétitivité logistique dans un monde de plus en plus connecté.
De ce fait, le domaine portuaire est très friand de la digitalisation de ses processus afin de bénéficier des avantages de l’industrie 4.0 pour l’excellence opérationnelle et la maintenance préventive.
Le fonctionnement des grues portuaires et portiques
Les grues portuaires ainsi que les portiques sont des équipements lourds que l’on retrouve dans les ports maritimes commerciaux. Ils ont pour utilité principale de charger et décharger les navires. Certains équipements portuaires sont spécialisés dans la manutention des terminaux de vrac alors que d’autres sont plus adaptés aux conteneurs.
Les deux types d’équipements sont typiquement opérés par des grutiers et sont équipées de salles machines. Des automates industriels y sont déployés afin d’implémenter la logique d’opération avec les différents garde-fous et éléments de sécurité. Ces automates agissent comme le « cerveau » de l’équipement dans la salle machine névralgique et sont connectés aux différents composants industriels de la grue.
Ainsi, l’automate agit sur les aspects de contrôle et d’instrumentation.
Sécurité et efficacité dans les ports : les enjeux cruciaux de l’automatisation
La sécurité reste l’un des aspects les plus importants du fait des risques que peut comporter la manutention de tonnes de marchandise. On retrouve un nombre important de logiques implémentées sur l’automate pour assurer la sécurité des opérateurs ainsi que des équipements et marchandises manipulées.
L’autre priorité majeure reste évidemment l’efficience ou l’excellence opérationnelle. En effet, tout incident sur ces équipements réduit grandement le rendement du terminal affecté et peut même exposer le port à des pénalités conséquence vis-à-vis des sociétés de transport.
Plusieurs problématiques identifiées pour les données
Selon cette logique, les informations traitées par l’automate deviennent critiques pour la bonne conduite des opérations. Or, ces données souffrent de plusieurs problématiques :
- Les données de l’automate y sont locales. Elles ne sont pas gérées de façon centralisée. De ce fait, l’opérateur a besoin de se mettre sur chaque grue en physique ou en « remote desktop ».
- La connectivité représente un défi important du fait de la superficie importante à couvrir. Les options de réseau local outdoor de type Wifi sont pénalisées également par le métal des grues et des conteneurs.
- La donnée n’est analysée que sur des temps courts pour planifier des opérations. L’historisation n’est pas native. La valeur ressortie de la data en devient limitée.
- Tout accès à distance des automates doit se faire de façon sécurisée selon des règles de sécurité appropriées.
Vers l’IA dans les ports : une architecture sûre et prédictive
Une des solutions proposées met la donnée au centre de l’architecture de façon sécurisée. En effet, elle répond à des problématiques de gestion opérationnelle en assurant un alerting en temps réel des principaux incidents avec une capacité de prédiction d’incidents facilitée par l’usage de l’IA.
Afin de répondre aux problématiques d’amélioration continue, la solution a également un volet reporting et analyse de données où d’autres algorithmes d’IA sont présents, notamment pour le forecast sur les taux d’utilisation et d’affectation.
Sur le volet collecte, cette solution s’interface selon les protocoles industriels présents en prenant en compte les spécificités du métier. Ainsi, selon les automates, un interfaçage est utilisé pour remonter les signaux validés comme étant critiques. Parmi ces éléments on retrouve la vitesse de l’anémomètre, qui est critique pour éviter une chute d’une grue déployée lors de rafales, ou encore la température de salle machine indicative de frictions ou d’usure très dangereuses.
D’autres éléments sont collectés et sont corrélés pour détecter l’ancrage et l’affectation des grues. Enfin, l’une des métriques les plus importantes est le compteur général selon lequel les maintenances préventives sont planifiées.
Afin de favoriser une architecture pérenne permettant de fédérer de nouveaux projets data, la solution inclut au centre de son architecture un datalake alimenté par les données des automates, capteurs et outil de maintenance GMAO. Grâce à cela, de nouveaux projets d’analyse sont facilités pour répondre à des besoins évolutifs.
Les plus lus…
Le bureau d’analyse des risques et des pollutions industrielles (Barpi) a publié un nouveau flash Aria dédié aux travaux par…
La roue de Deming est une méthode d’amélioration continue symbolisée par une roue progressant sur une pente dans un…
Alors que les entreprises devant contrôler l’identité de leurs clients font évoluer leurs méthodes de vérification, les fraudeurs s’adaptent et…
Lancée le 17 décembre, la plateforme 17Cyber ambitionne de devenir le nouveau réflexe pour les victimes de cybermalveillance en France.…
L’intelligence artificielle connait une dynamique importante en termes d’implémentation, notamment depuis l’arrivée des « modèles de langages conversationnels ». Elle…
La directive (UE) 2024/3019 du Parlement européen et du Conseil du 27 novembre 2024 relative au traitement des eaux…